Skip to main content

Included in the following conference series:

  • 890 Accesses

Abstract

I give a synthetic review of the physics involved in the direct detection of gravitational waves, both from the point of view of what can be learned and what is needed to obtain and interpret the measurements.

To Elena

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We absorbed terms independent from the observed s(t) in a redefinition of the threshold.

  2. 2.

    This estimate of f ISCO is strictly valid only when one mass is much smaller than the other, and neglects spin effects.

  3. 3.

    P(s) here play the role of a normalization constant.

  4. 4.

    We will see later that exceptions are possible.

References

  1. A. Einstein, Die Grundlagen der Allgemeinene Relativitätstheorie (The foundations of the theory of general relativity). Ann. Phys. (1900) (series 4) 354(7), 769–822 (1916). ISSN 0003-3804. https://doi.org/10.1002/andp.19163540702

    Article  ADS  MATH  Google Scholar 

  2. A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation (Approximate integration of the field equations of gravitation), in Ständiger Beobachter der Preussischen Akademie der Wissenschaften: Part 1 (1916), pp. 688–696

    Google Scholar 

  3. A. Einstein, Über Gravitationswellen (On gravitational waves), in Ständiger Beobachter der Preussischen Akademie der Wissenschaften, Part 1 (1918), pp. 154–167

    Google Scholar 

  4. A. Einstein, N. Rosen, On gravitational waves. J. Frankl. Inst. 223(1), 43–54 (1937). ISSN 0016-0032 (print), 1879–2693 (electronic). https://doi.org/10.1016/S0016-0032(37)90583-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  6. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016). https://doi.org/10.1103/PhysRevLett.116.241102

    Article  ADS  MathSciNet  Google Scholar 

  7. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017). https://doi.org/10.1103/PhysRevLett.119.141101

    Article  ADS  Google Scholar 

  8. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  9. J. Weber, Gravitational-wave-detector events. Phys. Rev. Lett. 20(23), 1307 (1968). https://doi.org/10.1103/PhysRevLett.20.1307

    Article  ADS  Google Scholar 

  10. J. Weber, Gravitational radiation from the pulsars. Phys. Rev. Lett. 21, 395–396 (1968). https://doi.org/10.1103/PhysRevLett.21.395

    Article  ADS  Google Scholar 

  11. J. Weber, Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22, 1320–1324 (1969). https://doi.org/10.1103/PhysRevLett.22.1320

    Article  ADS  Google Scholar 

  12. M.E. Gertsenshtein, V.I. Pustovoit, On the detection of low frequency gravitational waves. Sov. Phys. JETP 16, 433 (1962).

    ADS  Google Scholar 

  13. R.L. Forward, Wide band laser interferometer gravitational radiation experiment. Phys. Rev. D17, 379–390 (1978). https://doi.org/10.1103/PhysRevD.17.379

    ADS  Google Scholar 

  14. R. Weiss, Electronically Coupled Broadband Gravitational Antenna. Quarterly Progress Report (Research Laboratory of Electronics (MIT), Cambridge, 1972), p. 105

    Google Scholar 

  15. J. Aasi et al., Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015). https://doi.org/10.1088/0264-9381/32/7/074001

    Article  ADS  Google Scholar 

  16. F Acernese, M Agathos, K. Agatsuma, D. Aisa, N. Allemandou, A. Allocca, J. Amarni, P. Astone, G. Balestri, et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity 32(2), 024001 (2015)

    Google Scholar 

  17. C.S. Unnikrishnan, Indigo and LIGO-India: scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 22(1), 1341010 (2013). https://doi.org/10.1142/S0218271813410101

    Article  ADS  Google Scholar 

  18. J.M. Weisberg, J.H. Taylor, Relativistic binary pulsar B1913+ 16: thirty years of observations and analysis. ASP Conf. Ser. 328, 25 (2005)

    ADS  Google Scholar 

  19. R.A. Hulse, J.H. Taylor, A High-sensitivity pulsar survey. Astrophys. J. 191, L59 (1974). https://doi.org/10.1086/181548

    Article  ADS  Google Scholar 

  20. J.H. Taylor, J.M. Weisberg, Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+ 16. Astrophys. J. 345, 434–450 (1989). https://doi.org/10.1086/167917

    Article  ADS  Google Scholar 

  21. M. Maggiore Gravitational Waves (Oxford University Press, Oxford, 2007). ISBN 9780198570745

    Google Scholar 

  22. T. Accadia et al., The seismic Superattenuators of the Virgo gravitational waves interferometer. Low Freq. Noise Vibrat. Act. Control 30(1), 63–79 (2011) https://doi.org/10.1260/0263-0923.30.1.63

    Article  Google Scholar 

  23. T. Akutsu et al., KAGRA: 2.5 generation interferometric gravitational wave detector. Nat. Astron. 3(1), 35–40 (2019). https://doi.org/10.1038/s41550-018-0658-y

  24. M. Punturo et al., The third generation of gravitational wave observatories and their science reach. Classical Quantum Gravity 27, 084007 (2010). https://doi.org/10.1088/0264-9381/27/8/084007

    Article  ADS  Google Scholar 

  25. S. Hild, S. Chelkowski, A. Freise, J. Franc, N. Morgado, R. Flaminio, R. DeSalvo, A xylophone configuration for a third generation gravitational wave detector. Classical Quantum Gravity 27, 015003 (2010). https://doi.org/10.1088/0264-9381/27/1/015003

    Article  ADS  MATH  Google Scholar 

  26. C.M. Caves, quantum mechanical noise in an interferometer. Phys. Rev. D23, 1693–1708 (1981). https://doi.org/10.1103/PhysRevD.23.1693

    Article  ADS  MathSciNet  Google Scholar 

  27. A.M. Steinberg, M.W. Mitchell, J.S. Lundeen, Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  28. J.G. Rarity, P.R. Tapster, E. Jakeman, T. Larchuk, R.A. Campos, M.C. Teich, B.E.A. Saleh, Two-photon interference in a Mach-Zehnder interferometer. Phys. Rev. Lett. 65, 1348–1351 (1990). https://doi.org/10.1103/PhysRevLett.65.1348

    Article  ADS  Google Scholar 

  29. R. Demkowicz-Dobrzanski, K. Banaszek, R. Schnabel, Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600. Phys. Rev. A88(4), 041802 (2013). https://doi.org/10.1103/PhysRevA.88.041802

  30. H.P. Yuen, Contractive states and the standard quantum limit for monitoring free-mass positions. Phys. Rev. Lett. 51, 719–722 (1983). https://doi.org/10.1103/PhysRevLett.51.719

    Article  ADS  Google Scholar 

  31. M.T. Jaekel, S. Reynaud, Quantum limits in interferometric measurements. Europhys. Lett. 13(4), 301–306 (1990). https://doi.org/10.1209/0295-5075/13/4/003

    Article  ADS  Google Scholar 

  32. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001). https://doi.org/10.1103/PhysRevD.65.022002

    Article  ADS  Google Scholar 

  33. H. Müller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, Y. Chen, Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008). https://doi.org/10.1103/PhysRevLett.100.013601

    Article  ADS  Google Scholar 

  34. T.P. Purdy, R.W. Peterson, C.A. Regal, Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121), 801–804 (2013). ISSN 0036-8075. https://doi.org/10.1126/science.1231282

    Article  ADS  Google Scholar 

  35. A.H. Safavi Naeini et al., Squeezed light from a silicon micromechanical resonator. Nature 500, 185–189 (2013)

    Article  ADS  Google Scholar 

  36. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010). https://doi.org/10.1103/PhysRevLett.104.251102

    Article  ADS  Google Scholar 

  37. A. Buonanno, Y. Chen, Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys. Rev. D 65, 042001 (2002). https://doi.org/10.1103/PhysRevD.65.042001

    Article  ADS  Google Scholar 

  38. B.S. Sheard, M.B. Gray, C.M. Mow-Lowry, D.E. McClelland, S.E. Whitcomb, Observation and characterization of an optical spring. Phys. Rev. A 69, 051801 (2004). https://doi.org/10.1103/PhysRevA.69.051801

    Article  ADS  Google Scholar 

  39. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007). https://doi.org/10.1103/PhysRevLett.99.160801

  40. V.B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Parametric oscillatory instability in Fabry–Perot interferometer. Phys. Lett. A 287(5), 331–338 (2001). ISSN 0375-9601. https://doi.org/10.1016/S0375-9601(01)00510-2

    Article  ADS  Google Scholar 

  41. S.A. Hughes, K.S. Thorne, Seismic gravity gradient noise in interferometric gravitational wave detectors. Phys. Rev. D58, 122002 (1998). https://doi.org/10.1103/PhysRevD.58.122002

    ADS  Google Scholar 

  42. M. Beccaria et al., Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity. Classical Quantum Gravity 15, 3339–3362 (1998). https://doi.org/10.1088/0264-9381/15/11/004

    ADS  Google Scholar 

  43. M.G. Beker et al., Improving the sensitivity of future GW observatories in the 1-Hz to 10-Hz band: Newtonian and seismic noise. Gen. Relativ. Gravit. 43, 623–656 (2011). https://doi.org/10.1007/s10714-010-1011-7

    Article  ADS  Google Scholar 

  44. M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory. Classical Quantum Gravity 27, 194002 (2010). https://doi.org/10.1088/0264-9381/27/19/194002

    Article  ADS  Google Scholar 

  45. G. Cella, Off-line subtraction of seismic Newtonian noise, in Recent Developments in General Relativity. Proceedings of the 13th Italian Conference on General Relativity and Gravitational Physics (Springer, Milano, 1998), pp. 495–503

    Chapter  Google Scholar 

  46. J.C. Driggers, J. Harms, R.X. Adhikari, Subtraction of Newtonian noise using optimized sensor arrays. Phys. Rev. D86, 102001 (2012). https://doi.org/10.1103/PhysRevD.86.102001

    ADS  Google Scholar 

  47. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Prospects for observing and localizing gravitational-wave transients with advanced LIGO, advanced Virgo and KAGRA. Living Rev. Relativ. 21(1), 3 (2018). ISSN 1433-8351. https://doi.org/10.1007/s41114-018-0012-9

  48. B.P. Abbott et al., GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

  49. B.P. Abbott et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018). arXiv:1811.12907

    Google Scholar 

  50. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys. Rev. X 6, 041014 (2016). https://doi.org/10.1103/PhysRevX.6.041014

    Google Scholar 

  51. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016). https://doi.org/10.1103/PhysRevLett.116.221101

    Article  ADS  Google Scholar 

  52. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. Astrophys. J. 848(2), L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  ADS  Google Scholar 

  53. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101

    Article  ADS  Google Scholar 

  54. M. Fishbach, R. Gray, I. Magaña Hernandez, H. Qi, A. Sur, A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart. Astrophys. J. Lett. 871(1), L13 (2019)

    Google Scholar 

  55. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  56. D.I. Jones, Gravitational waves from rotating strained neutron stars. Classical Quantum Gravity 19(7), 1255–1265 (2002). https://doi.org/10.1088/0264-9381/19/7/304

    Article  ADS  MATH  Google Scholar 

  57. C. Caprini, Stochastic background of gravitational waves from cosmological sources. J. Phys. Conf. Ser. 610(1), 012004 (2015). https://doi.org/10.1088/1742-6596/610/1/012004

    Google Scholar 

  58. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced Virgo. Living Rev. Relativ. 19(1), 1 (2016). ISSN 1433-8351. https://doi.org/10.1007/lrr-2016-1

  59. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, et al., The Einstein telescope: a third-generation gravitational wave observatory. Classical Quantum Gravity 27(19), 194002 (2010)

    Google Scholar 

  60. M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rep. 331(6), 283–367 (2000). ISSN 0370-1573. https://doi.org/10.1016/S0370-1573(99)00102-7

    Article  ADS  Google Scholar 

  61. I. Sendra, T.L. Smith, Improved limits on short-wavelength gravitational waves from the cosmic microwave background. Phys. Rev. D 85, 123002 (2012). https://doi.org/10.1103/PhysRevD.85.123002

    Article  ADS  Google Scholar 

  62. Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S.J. Chamberlin, S. Chatterjee, B. Christy, J.M. Cordes, N.J. Cornish, K. Crowter, et al., The NANOGrav nine-year data set: Limits on the isotropic stochastic gravitational wave background. Astrophys. J. 821(1), 13 (2016).

    Article  ADS  Google Scholar 

  63. M.S. Turner, Detectability of inflation-produced gravitational waves. Phys. Rev. D 55, R435–R439 (1997). https://doi.org/10.1103/PhysRevD.55.R435

    Article  ADS  Google Scholar 

  64. V. Mandic, A. Buonanno, Accessibility of the pre-big-bang models to LIGO. Phys. Rev. D 73, 063008 (2006). https://doi.org/10.1103/PhysRevD.73.063008

    Article  ADS  Google Scholar 

  65. N. Barnaby, E. Pajer, M. Peloso, Gauge field production in axion inflation: consequences for monodromy, non-Gaussianity in the CMB, and gravitational waves at interferometers. Phys. Rev. D 85, 023525 (2012). https://doi.org/10.1103/PhysRevD.85.023525

    Article  ADS  Google Scholar 

  66. X. Siemens, V. Mandic, J. Creighton, Gravitational-wave stochastic background from cosmic strings. Phys. Rev. Lett. 98, 111101 (2007). https://doi.org/10.1103/PhysRevLett.98.111101

    Article  ADS  Google Scholar 

  67. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Upper limits on the stochastic gravitational-wave background from advanced LIGO’s first observing run. Phys. Rev. Lett. 118, 121101 (2017). https://doi.org/10.1103/PhysRevLett.118.121101

    Article  ADS  MathSciNet  Google Scholar 

  68. P.D. Lasky et al., Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X6(1), 011035 (2016). https://doi.org/10.1103/PhysRevX.6.011035

  69. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., GW150914: implications for the stochastic gravitational-wave background from binary black holes. Phys. Rev. Lett. 116, 131102 (2016). https://doi.org/10.1103/PhysRevLett.116.131102

    Article  ADS  MathSciNet  Google Scholar 

  70. T. Regimbau, The astrophysical gravitational wave stochastic background. Res. Astron. Astrophys. 11(4), 369 (2011)

    Article  ADS  Google Scholar 

  71. J. Aasi, B.P. Abbott, R. Abbott, T. Abbott, M.R. Abernathy, T. Accadia, F. Acernese, K. Ackley, C. Adams, et al., Improved upper limits on the stochastic gravitational-wave background from 2009–2010 LIGO and Virgo data. Phys. Rev. Lett. 113, 231101 (2014). https://doi.org/10.1103/PhysRevLett.113.231101

  72. A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, M.-A. Sakagami, Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D 79, 082002 (2009). https://doi.org/10.1103/PhysRevD.79.082002

    Article  ADS  Google Scholar 

  73. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, et al., Search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background. Phys. Rev. Lett. 120, 201102 (2018). https://doi.org/10.1103/PhysRevLett.120.201102

    Article  ADS  Google Scholar 

  74. J. Abadie, B.P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, P. Ajith, et al., Directional limits on persistent gravitational waves using LIGO S5 science data. Phys. Rev. Lett. 107, 271102 (2011). https://doi.org/10.1103/PhysRevLett.107.271102

    Article  Google Scholar 

  75. S. Drasco, É.É. Flanagan, Detection methods for non-Gaussian gravitational wave stochastic backgrounds. Phys. Rev. D 67:082003 (2003). https://doi.org/10.1103/PhysRevD.67.082003

    Article  ADS  Google Scholar 

Download references

Acknowledgement

I would like to thank the organizers of the Domoschool 2018 for inviting me, and the editors of this book for their patience in waiting for my contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cella, G. (2019). The Physics of LIGO–Virgo. In: Cacciatori, S., Güneysu, B., Pigola, S. (eds) Einstein Equations: Physical and Mathematical Aspects of General Relativity. DOMOSCHOOL 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-18061-4_4

Download citation

Publish with us

Policies and ethics