Skip to main content

A Methodology for Trabecular Bone Microstructure Modelling Agreed with Three-Dimensional Bone Properties

  • Conference paper
  • First Online:
Information Technology, Systems Research, and Computational Physics (ITSRCP 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 945))

  • 349 Accesses

Abstract

Bone tissue is a structure with a high level of geometrical complexity as a result of mutual distribution of a large number of pores and bone scaffolds. For the study of the mechanical properties of the bone, there is a demand to generated microstructures comparable to trabecular bone with similar characteristics. Internal structure of the trabecular and compact bone has a high impact of their mechanical and biological character. The novel methodology for the definition of three-dimensional geometries with the properties similar to natural bone is presented. An algorithm uses a set of parameters to characterize ellipsoids computed based on Finite Element Method (FEM). A comparative analysis of real trabecular bone samples and the corresponding generated models is presented. Additional validation schemas are proposed. It is concluded that computer-aided modelling appears to be an important tool in the study of the mechanical behavior of bone microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romanova, V., Balokhonov, R., Makarov, P., Schmauder, S., Soppa, E.: Simulation of elasto–plastic behaviour of an artificial 3D-structure under dynamic loading. Comput. Mater. Sci. 28, 518–528 (2003)

    Article  Google Scholar 

  2. Saylor, D., Fridy, J., El-Dasher, B., Jung, K.-Y., Rollett, A.: Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall. Mater. Trans. A 35, 1969–1979 (2004)

    Article  Google Scholar 

  3. Brahme, A., Alvi, M.H., Saylor, D., Fridy, J., Rollett, A.D.: 3D reconstruction of microstructure in a commercial purity aluminum. Scripta Mater. 55, 75–80 (2006)

    Article  Google Scholar 

  4. Haire, T., Ganney, P., Langton, C.: An investigation into the feasibility of implementing fractal paradigms to simulate cancellous bone structure. Comput. Methods Biomech. Biomed. Eng. 4, 341–354 (2001)

    Article  Google Scholar 

  5. Rajon, D.A., Jokisch, D.W., Patton, P.W., Shah, A.P., Watchman, C.J., Bolch, W.E.: Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements. Phys. Med. Biol. 47, 1741–1759 (2002)

    Article  Google Scholar 

  6. Ruiz, O., Schouwenaars, R., Ramírez, E.I., Jacobo, V.H., Ortiz, A.: Analysis of the architecture and mechanical properties of cancellous bone using 2D voronoi cell based models. In: Proceedings of the World Congress on Engineering 2010, WCE 2010, vol. I, pp. 1–6 (2010)

    Google Scholar 

  7. Kowalczyk, P.: Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J. Biomech. 36, 961–972 (2003)

    Article  Google Scholar 

  8. Kowalczyk, P.: Orthotropic properties of cancellous bone modelled as parameterized cellular material. Comput. Methods Biomech. Biomed. Eng. 9, 135–147 (2006)

    Article  Google Scholar 

  9. Kowalczyk, P.: Simulation of orthotropic microstructure remodelling of cancellous bone. J. Biomech. 43, 563–569 (2010)

    Article  Google Scholar 

  10. Lakatos, E., Bojtár, I.: Trabecular bone adaptation in a finite element frame model using load dependent fabric tensors. Mech. Mater. 43, 1–9 (2011)

    Article  Google Scholar 

  11. Donaldson, F.E., Pankaj, P., Law, A.H., Simpson, A.H.: Virtual trabecular bone models and their mechanical response. Inst. Mech. Eng. Proc. Part H J. Eng. Med. 222, 1185–1195 (2008)

    Article  Google Scholar 

  12. Wang, J.: Modelling young’s modulus for porous bones with microstructural variation and anisotropy. J. Mater. Sci. Mater. Med. 21, 463–472 (2010)

    Article  Google Scholar 

  13. Mouton, E.: Caractérisation expérimentale des propriéteé élastiques apparentes de l’os spongieux porcin: essais mécaniques et imagerie, Master’s thesis, École nationale d’ingénieurs de Metz (2011)

    Google Scholar 

  14. Janc, K., Tarasiuk, J., Bonnet, A.S., Lipinski, P.: Semi-automated algorithm for cortical and trabecular bone separation from CT scans. Comput. Methods Biomech. Biomed. Eng. 14, 217–218 (2011)

    Article  Google Scholar 

  15. Lespessailles, E., Chappard, C., Bonnet, N., Benhamou, C.L.: Imaging techniques for evaluating bone microarchitecture. Revue du Rhumatisme 73, 435–443 (2006)

    Article  Google Scholar 

  16. Parfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M., Recker, R.R.: Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the ASBMR histomorphometry nomenclature committee. J. Bone Miner. Res. 2, 595–610 (1987)

    Article  Google Scholar 

  17. Doblaré, M.: Mechanical behaviour of bone tissue. computational models of bone fracture. In: 15th CISM-IUTAM Summer School on “Bone Cell and Tissue Mechanics”, International Centre for Mechanical Sciences, pp. 1–25 (2007)

    Google Scholar 

  18. Hildebrand, T., Laib, A., Müller, R., Dequeker, J., Rüegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14, 1167–1174 (1999)

    Article  Google Scholar 

  19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  20. Hildebrand, T., Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997)

    Article  Google Scholar 

  21. Fazzalari, N.L., Parkinson, I.H.: Fractal dimension and architecture of trabecular bone. J. Pathol. 178, 100–105 (1996)

    Article  Google Scholar 

  22. Harrigan, T.P., Mann, R.W.: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19, 761–767 (1984)

    Article  Google Scholar 

  23. Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328 (1997)

    Article  Google Scholar 

  24. Cowin, S., Doty, S.: Tissue Mechanics. Springer, New York (2007)

    Book  Google Scholar 

  25. Hildebrand, T., Rüegsegger, P.: Quantification of bone microarchitecture with the structure model index. Comput. Methods Biomech. Biomed. Eng. 1, 15–23 (1997)

    Article  Google Scholar 

  26. Odgaard, A., Gundersen, H.: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993)

    Article  Google Scholar 

  27. Toriwaki, J., Yonekura, T.: Euler number and connectivity indexes of a three-dimensional digital picture. FORMATOKYO 17, 183–209 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Harrigan, T.P., Jasty, M., Mann, R.W., Harris, W.H.: Limitations of the continuum assumption in cancellous bone. J. Biomech. 21, 269–275 (1988)

    Article  Google Scholar 

  29. Woo, D., Kim, C., Kim, H., Lim, D.: An experimental–numerical methodology for a rapid prototyped application combined with finite element models in vertebral trabecular bone. Exp. Mech. 48, 657–664 (2008)

    Article  Google Scholar 

  30. Woo, D., Kim, C., Lim, D., Kim, H.: Experimental and simulated studies on the plastic mechanical characteristics of osteoporotic vertebral trabecular bone. Curr. Appl. Phys. 10, 729–733 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially financed by the Faculty of Physics and Applied Computer Science AGH. Adrian Wit has been partly supported by the EU Project POWR.03.02.00-00-I004/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Tarasiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamiński, J., Wit, A., Janc, K., Tarasiuk, J. (2020). A Methodology for Trabecular Bone Microstructure Modelling Agreed with Three-Dimensional Bone Properties. In: Kulczycki, P., Kacprzyk, J., Kóczy, L., Mesiar, R., Wisniewski, R. (eds) Information Technology, Systems Research, and Computational Physics. ITSRCP 2018. Advances in Intelligent Systems and Computing, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-030-18058-4_17

Download citation

Publish with us

Policies and ethics