Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2239))

  • 1088 Accesses

Abstract

Diophantine equations have been studied throughout the history of mathematics. Initially considered by Diophantus of Alexandria, a Hellenistic mathematician from the third century CE, they include the famous Fermat’s Last Theorem, stated by Pierre de Fermat in the seventeenth century and eventually proved by Andrew Wiles in 1994. Hilbert’s tenth problem asked to provide an algorithm or procedure to decide whether a given Diophantine equation admits integer solutions. Such an algorithm was shown not to exist by Yuri Matiyasevich in 1970, building on previous work of Martin Davis, Hilary Putnam, and Julia Robinson.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The general form of Rado’s Theorem for a single equation states that c 1 X 1 + ⋯ + c k X k = 0 is partition regular if and only there exists a nonempty set of indexes I ⊆{1, …, k} with ∑i ∈ I c i = 0.

  2. 2.

    This theorem is essentially the content of Exercise 4.11.

References

  1. V. Bergelson, Ergodic Ramsey theory—an update, in Ergodic Theory of $∖bf Zˆd$ Actions (Warwick, 1993–1994). London Mathematical Society Lecture Note Series, vol. 228 (Cambridge University Press, Cambridge, 1996), pp. 1–61

    Google Scholar 

  2. V. Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number theory, in Ultrafilters Across Mathematics. Contemporary Mathematics, vol. 530 (American Mathematical Society, Providence, 2010), pp. 23–47

    Google Scholar 

  3. V. Bergelson, N. Hindman, Nonmetrizable topological dynamics and Ramsey theory. Trans. Am. Math. Soc. 320(1), 293–320 (1990)

    Article  MathSciNet  Google Scholar 

  4. T.C. Brown, V. Rödl, Monochromatic solutions to equations with unit fractions. Bull. Aust. Math. Soc. 43(3), 387–392 (1991)

    Article  MathSciNet  Google Scholar 

  5. S. Chow, S. Lindqvist, S. Prendiville, Rado’s criterion over squares and higher powers. arXiv:1806.05002 (2018)

    Google Scholar 

  6. P. Csikvári, K. Gyarmati, A. Sárközy, Density and Ramsey type results on algebraic equations with restricted solution sets. Combinatorica 32(4), 425–449 (2012)

    Article  MathSciNet  Google Scholar 

  7. M. Di Nasso, Iterated hyper-extensions and an idempotent ultrafilter proof of Rado’s Theorem. Proc. Am. Math. Soc. 143(4), 1749–1761 (2015)

    Article  MathSciNet  Google Scholar 

  8. M. Di Nasso, L. Luperi Baglini, Ramsey properties of nonlinear Diophantine equations. Adv. Math. 324, 84–117 (2018)

    Article  MathSciNet  Google Scholar 

  9. M. Di Nasso, M. Riggio, Fermat-like equations that are not partition regular. Combinatorica 38(5), 1067–1078 (2018)

    Article  MathSciNet  Google Scholar 

  10. N. Frantzikinakis, B. Host, Higher order Fourier analysis of multiplicative functions and applications. J. Am. Math. Soc. 30(1), 67–157 (2017)

    Article  MathSciNet  Google Scholar 

  11. B. Green, T. Sanders, Monochromatic sums and products. Discrete Anal. Paper No. 5, 43 pp. (2016)

    Google Scholar 

  12. N. Hindman, Monochromatic sums equal to products in \(\mathbb {N}\). Integers 11(4), 431–439 (2011)

    Google Scholar 

  13. A. Khalfalah, E. Szemerédi, On the number of monochromatic solutions of x + y = z 2. Combin. Probab. Comput. 15(1–2), 213–227 (2006)

    Article  MathSciNet  Google Scholar 

  14. E. Lamb, Two-hundred-terabyte maths proof is largest ever. Nature 534(7605), 17–18 (2016)

    Article  Google Scholar 

  15. H. Lefmann, On partition regular systems of equations. J. Comb. Theory Ser. A 58(1), 35–53 (1991)

    Article  MathSciNet  Google Scholar 

  16. L. Luperi Baglini, Partition regularity of nonlinear polynomials: a nonstandard approach. Integers 14, A30, 23 (2014)

    Google Scholar 

  17. A. Maleki, Solving equations in \(\beta \mathbb {N}\). Semigroup Forum 61(3), 373–384 (2000)

    Article  MathSciNet  Google Scholar 

  18. J. Moreira, Monochromatic sums and products in \(\mathbb {N}\). Ann. Math. 185(3), 1069–1090 (2017)

    Article  MathSciNet  Google Scholar 

  19. R. Rado, Studien zur Kombinatorik. Math. Z. 36(1), 424–470 (1933)

    Google Scholar 

  20. J. Sahasrabudhe, Exponential patterns in arithmetic Ramsey theory. arXiv:1607.08396 (2016)

    Google Scholar 

  21. J. Sahasrabudhe, Monochromatic solutions to systems of exponential equations. J. Comb. Theory Ser. A 158, 548–559 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasso, M.D., Goldbring, I., Lupini, M. (2019). Partition Regularity of Equations. In: Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory. Lecture Notes in Mathematics, vol 2239. Springer, Cham. https://doi.org/10.1007/978-3-030-17956-4_9

Download citation

Publish with us

Policies and ethics