Skip to main content

Computing the Nucleolus of Weighted Cooperative Matching Games in Polynomial Time

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11480))

Abstract

We provide an efficient algorithm for computing the nucleolus for an instance of a weighted cooperative matching game. This resolves a long-standing open question posed in [Faigle, Kern, Fekete, Hochstättler, Mathematical Programming, 1998].

This work was done in part while the second author was visiting the Simons Institute for the Theory of Computing. Supported by DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-1740425.

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is common within the literature, for instance in [26], to exclude the coalitions for \(S = \varnothing \) and \(S = V\) in the definition of the nucleolus. On the other hand, one could also consider the definition of the nucleolus with all possible coalitions, including \(S = \varnothing \) and \(S = V\). We note that the two definitions of the nucleolus are equivalent in all instances of matching games except for the trivial instance of a graph consisting of two nodes joined by a single edge.

References

  1. Aumann, R.J., Maschler, M.: Game theoretic analysis of a bankruptcy problem from the talmud. J. Econ. Theory 36(2), 195–213 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bateni, M.H., Hajiaghayi, M.T., Immorlica, N., Mahini, H.: The cooperative game theory foundations of network bargaining games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 67–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_7

    Chapter  Google Scholar 

  3. Biró, P., Kern, W., Paulusma, D.: Computing solutions for matching games. Int. J. Game Theory 41, 75–90 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biró, P., Kern, W., Paulusma, D., Wojuteczky, P.: The stable fixtures problem with payments. Games Econ. Behav. 11(9), 245–268 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Brânzei, R., Solymosi, T., Tijs, S.: Strongly essential coalitions and the nucleolus of peer group games. Int. J. Game Theory 33(3), 447–460 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, N., Lu, P., Zhang, H.: Computing the nucleolus of matching, cover and clique games. In: AAAI (2012)

    Google Scholar 

  7. Dadush, D.: Personal communication (2017)

    Google Scholar 

  8. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Res. Logist. Q. 12(3), 223–259 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, X., Fang, Q.: Algorithmic cooperative game theory. In: Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.) Pareto Optimality, Game Theory and Equilibria. SOIA, vol. 17, pp. 159–185. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77247-9_7

    Chapter  Google Scholar 

  10. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. J. Comb. Optim. 18(1), 64–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stan. B 69(125–130), 55–56 (1965)

    MathSciNet  Google Scholar 

  13. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elkind, E., Goldberg, L.A., Goldberg, P., Wooldridge, M.: Computational complexity of weighted threshold games. In: Proceedings of the National Conference on Artificial Intelligence, p. 718 (2007)

    Google Scholar 

  15. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: The nucleon of cooperative games and an algorithm for matching games. Math. Program. 83(1–3), 195–211 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost spanning tree games is NP-hard. Int. J. Game Theory 27(3), 443–450 (1998)

    Article  MATH  Google Scholar 

  17. Faigle, U., Kern, W., Kuipers, J.: On the computation of the nucleolus of a cooperative game. Int. J. Game Theory 30(1), 79–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faigle, U., Kern, W., Kuipers, J.: Computing an element in the lexicographic kernel of a game. Math. Methods Oper. Res. 63(3), 427–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Faigle, U., Kern, W., Paulusma, D.: Note on the computational complexity of least core concepts for min-cost spanning tree games. Math. Methods Oper. Res. 52(1), 23–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farczadi, L.: Matchings and games on networks. University of Waterloo (2015)

    Google Scholar 

  21. Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games 4(40), 47–85 (1959)

    MathSciNet  MATH  Google Scholar 

  22. Granot, D., Granot, F., Zhu, W.R.: Characterization sets for the nucleolus. Int. J. Game Theory 27(3), 359–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Granot, D., Maschler, M., Owen, G., Zhu, W.R.: The kernel/nucleolus of a standard tree game. Int. J. Game Theory 25(2), 219–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-97881-4

    Book  MATH  Google Scholar 

  25. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol. 2. Springer, New York (2012)

    MATH  Google Scholar 

  26. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28(2), 294–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koenemann, J., Pashkovich, K., Toth, J.: Computing the nucleolus of weighted cooperative matching games in polynomial time. arXiv preprint arXiv:1803.03249 (2018)

  28. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person games. Technical report, Hebrew Univ Jerusalem (Israel) Dept of Mathematics (1967)

    Google Scholar 

  29. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kuipers, J., Solymosi, T., Aarts, H.: Computing the nucleolus of some combinatorially-structured games. Math. Program. 88(3), 541–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization, vol. 46. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  32. Lemaire, J.: An application of game theory: cost allocation. ASTIN Bull. J. IAA 14(1), 61–81 (1984)

    Article  Google Scholar 

  33. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus, and related solution concepts. Math. Oper. Res. 4(4), 303–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Megiddo, N.: Computational complexity of the game theory approach to cost allocation for a tree. Math. Oper. Res. 3(3), 189–196 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Paulusma, D.: Complexity Aspects of Cooperative Games. Twente University Press, Enschede (2001)

    Google Scholar 

  36. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow networks. Games Econ. Behav. 54(1), 205–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM (JACM) 64(6), 41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6), 1163–1170 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shapley, L.S., Shubik, M.: The assignment game I: the core. Int. J. Game Theory 1(1), 111–130 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23(2), 119–143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stearns, R.E.: Convergent transfer schemes for n-person games. Trans. Am. Math. Soc. 134(3), 449–459 (1968)

    MathSciNet  MATH  Google Scholar 

  42. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, New York (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Umang Bhaskar, Daniel Dadush, and Linda Farczadi for stimulating and insightful discussions related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Toth .

Editor information

Editors and Affiliations

Appendices

Appendix

A Proof of Theorem 2

Proof

First, we show that \(P_1(\varepsilon _1)\subseteq \overline{P}_1(\varepsilon _1)\). Consider \(x\in P_1(\varepsilon _1)\). By Lemma 5(i) we have

Lemma 5(ii) shows that for all \(e\in E^+\), and holds by the universality of \(M^*\). It remains to show that

Suppose for contradiction there exists \(e \in E^*\) such that . By the definition of \(E^*\), there exists a universal matching \(M'\) containing e. Since \(M'\) is universal, . But by our choice of e,

contradicting that x is in \(P_1(\varepsilon _1)\). Thus we showed that \((x,\varepsilon _1)\) is feasible for (\(\overline{P}_1\)), i.e. we showed that \(P_1(\varepsilon _1)\subseteq \overline{P}_1(\varepsilon _1)\).

To complete the proof we show that \(\overline{P}_1(\overline{\varepsilon }_1)\subseteq P_1(\overline{\varepsilon }_1)\). Let x be an allocation in \(\overline{P}_1(\overline{\varepsilon }_1)\). Due to the description of the linear program (\(P_1\)), it is enough to show that for every matching \(M\in \mathcal {M}\) we have

Since it suffices to consider only the matchings M, which are unions of matchings on the graphs \(G[S_i^*]\), \(i \in [k]\). Let \(t_i:=|M\cap E(S_i^*)|\). By Lemma 6 applied to \(x^*\) there exists \(M' \subseteq M^*\) such that and \(|M'\cap E(S_i^*)|=t_i\), for all \(i\in [k]\). Then due to constraints (2) in (\(\overline{P}_1\)) we have

figure j

where the last inequality follows since \(M' \subseteq M^*\) and for all \(e \in E^*\).

Thus, we showed that \(P_1(\varepsilon _1)\subseteq \overline{P}_1(\varepsilon _1)\) and \(\overline{P}_1(\overline{\varepsilon }_1)\subseteq P_1(\overline{\varepsilon }_1)\). Recall, that \(\varepsilon _1\) and \(\overline{\varepsilon }_1\) are the optimal values of the linear programs (\(P_1\)) and (\(\overline{P}_1\)) respectively. Thus, we have \(\varepsilon _1=\overline{\varepsilon }_1\) and \(P_1(\varepsilon _1)=\overline{P}_1(\overline{\varepsilon }_1)\).    \(\blacksquare \)

B Example of a Matching Game With Empty Core

Consider the example in Fig. 1. This graph \(G=(V,E)\) is a 5-cycle with two adjacent edges 15 and 12 of weight 2, and the remaining three edges of weight 1. Since the maximum weight matching value is \(\nu (G) = 3\), but the maximum weight fractional matching value is \(\frac{7}{2}\), the core of this game is empty. The allocation \(x^*\) defined by \(x^*(1) = \frac{7}{5}\) and \(x^*(2) = x^*(3) = x^*(4) = x^*(5) = \frac{2}{5}\) lies in the leastcore. Each edge has the same excess, \(-\frac{1}{5}\), and any coalition of four vertices yields a minimum excess coalition with excess \(-\frac{2}{5}\). Hence the leastcore value of this game is \(\varepsilon _1=-\frac{2}{5}\).

In fact, we can see that \(x^*\) is the nucleolus of this game. To certify this we can use the result of Schmeidler [38] that the nucleolus lies in the intersection of the leastcore and the prekernel. For this example, the prekernel condition that for all \(i\ne j \in V\),

$$\begin{aligned} \max \{ x(S\cup \{i\}) -\nu (S\cup \{i\}) : S\subseteq V\backslash \{j\}\} \\ = \max \{ x(S\cup \{j\}) -\nu (S\cup \{j\}):S\subseteq V\backslash \{i\}\} \end{aligned}$$

reduces to the condition that the excess values of non-adjacent edges are equal. Since G is an odd cycle, this implies that all edges has equal excess, i.e.

figure k

Combining the four equations above with the leastcore condition that \(x(V) = \nu (G)\) we obtain a system of equations with the unique solution \(x^*\). Hence the intersection of the leastcore and prekernel is precisely \(\{x^*\}\), and so by Schmeidler, \(x^*\) is the nucleolus.

Fig. 1.
figure 1

Matching game with empty core

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Könemann, J., Pashkovich, K., Toth, J. (2019). Computing the Nucleolus of Weighted Cooperative Matching Games in Polynomial Time. In: Lodi, A., Nagarajan, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2019. Lecture Notes in Computer Science(), vol 11480. Springer, Cham. https://doi.org/10.1007/978-3-030-17953-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17953-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17952-6

  • Online ISBN: 978-3-030-17953-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics