Advertisement

Mitosomes in Parasitic Protists

  • Jan TachezyEmail author
  • Ondřej Šmíd
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Mitosomes are highly reduced forms of mitochondria, which were found in several parasitic protists of various eukaryotic lineages, including the human parasites Entamoeba histolytica, Giardia intestinalis, Cryptosporidium spp., Mikrocytos mackini, and microsporidians. Although all these organisms underwent different evolutionary histories, they arrived at common life strategies for which oxygen-dependent ATP synthesis is not required: they inhabit either an oxygen-poor environment such as the intestinal tract of their hosts or they are adapted to intracellular parasitism. Consequently, the majority of their mitochondrial functions were permanently lost including ATP synthesis with concomitant loss of the organellar genome. The common features of mitosomes, which were retained and pointed to their mitochondrial origin, are a double membrane surrounding the organellar matrix, conserved mechanisms of protein import and processing, and the biosynthesis of iron-sulfur (Fe-S) clusters. Finding the latter function in mitosomes supports the notion that Fe-S cluster assembly is the only essential function of mitochondria necessary for the maturation of cellular Fe-S proteins. Only in the mitosomes of Entamoeba histolytica the mitochondrion type of Fe-S cluster assembly machinery was not conserved, and these organelles gained a unique sulfate activation pathway. In spite of a great progress in elucidation of the evolutionary paths leading to the formation of mitosomes, cellular functions of mitosomes are still poorly understood.

Notes

Acknowledgments

Research in the JT laboratory is supported by the Ministry of Education, Youth and Sports of the Czech Republic project NPU II (LQ1604) and by ERD Funds project CePaViP (CZ.02.1.01/0.0/0.0/16_019/0000759).

References

  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedCrossRefGoogle Scholar
  2. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395PubMedGoogle Scholar
  4. Agar JN, Yuvaniyama P, Jack RF, Cash VL, Smith AD, Dean DR, Johnson MK (2000) Modular organization and identification of a mononuclear iron-binding site within the NifU protein. J Biol Inorg Chem 5:167–177PubMedCrossRefGoogle Scholar
  5. Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, Likic VA, Traven A, Lithgow T (2012) A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol 29:113–122PubMedGoogle Scholar
  6. Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279:16863–16874PubMedCrossRefGoogle Scholar
  7. Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JM Jr, Ragan MA, Hirt RP, Roger AJ (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arisue N, Sachez LB, Weiss LM, Müller M, Hashimoto T (2002) Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int 51:9–16PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balk J, Pierik AJ, Aguilar Netz DJ, Mühlenhoff U, Lill R (2005) Nar1p, a conserved eukaryotic protein with similarity to Fe-only hydrogenases, functions in cytosolic iron-sulphur protein biogenesis. Biochem Soc Trans 33:86–89PubMedCrossRefGoogle Scholar
  10. Banci L, Brancaccio D, Ciofi-Baffoni S, Del CR, Gadepalli R, Mikolajczyk M, Neri S, Piccioli M, Winkelmann J (2014) [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis. Proc Natl Acad Sci U S A 111:6203–6208PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR, McFadden GI (2000) Mitochondrial FtsZ in a chromophyte alga. Science 287:1276–1279PubMedCrossRefGoogle Scholar
  12. Benz C, Stribrna E, Hashimi H, Lukeš J (2017) Dynamin-like proteins in Trypanosoma brucei: a division of labour between two paralogs? PLoS One 12:e0177200PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bernas T, Dobrucki JW (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380:108–116PubMedCrossRefGoogle Scholar
  14. Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ (2004) Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 14:1537–1547PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boldogh IR, Fehrenbacher KL, Yang HC, Pon LA (2005) Mitochondrial movement and inheritance in budding yeast. Gene 354:28–36PubMedCrossRefGoogle Scholar
  17. Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P, Novellino E, Piccioli M, Ciofi-Baffoni S, Banci L (2014) Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery. J Am Chem Soc 136:16240–16250PubMedCrossRefGoogle Scholar
  18. Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200PubMedCrossRefGoogle Scholar
  19. Brown DM, Upcroft JA, Upcroft P (1993) Cysteine is the major low-molecular weight thiol in Giardia duodenalis. Mol Biochem Parasitol 61:155–158PubMedCrossRefGoogle Scholar
  20. Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656PubMedPubMedCentralCrossRefGoogle Scholar
  21. Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burki F, Corradi N, Sierra R, Pawlowski J, Meyer GR, Abbott CL, Keeling PJ (2013) Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in rhizaria. Curr Biol 23:1541–1547PubMedCrossRefGoogle Scholar
  23. Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A 103:15916–15920PubMedPubMedCentralCrossRefGoogle Scholar
  24. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, DeMichele G, Filla A, DeFrutos R, Palau F, Patel PI, DiDonato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRefGoogle Scholar
  25. Cavalier-Smith T (1987a) Eukaryotes with no mitochondria. Nature 326:332–333PubMedCrossRefGoogle Scholar
  26. Cavalier-Smith T (1987b) The origin of eukaryotic and archaebacterial cells. Ann N Y Acad Sci 503:17–54PubMedCrossRefGoogle Scholar
  27. Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ERS, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742PubMedCrossRefGoogle Scholar
  28. Chanez AL, Hehl AB, Engstler M, Schneider A (2006) Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci 119:2968–2974PubMedCrossRefGoogle Scholar
  29. Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A 92:6518–6521PubMedPubMedCentralCrossRefGoogle Scholar
  30. Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasit Today 12:465–471CrossRefGoogle Scholar
  31. Cory SA, Van Vranken JG, Brignole EJ, Patra S, Winge DR, Drennan CL, Rutter J, Barondeau DP (2017) Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions. Proc Natl Acad Sci U S A 114:E5325–E5334PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T (2009) The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26:1941–1947PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009) The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 9:287PubMedPubMedCentralCrossRefGoogle Scholar
  34. Doležal P, Šmíd O, Rada P, Zubáčová Z, Bursac D, Sutak R, Nebesářová J, Lithgow T, Tachezy J (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929PubMedPubMedCentralCrossRefGoogle Scholar
  35. Doležal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, Šedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T (2010) The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6:e1000812PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis – similarities to and differences from its bacterial counterpart. J Biol Chem 278:29719–29727PubMedCrossRefGoogle Scholar
  37. Ellis JE, Williams R, Cole D, Cammack R, Lloyd D (1993) Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325:196–200PubMedCrossRefGoogle Scholar
  38. Emelyanov VV (2003) Phylogenetic affinity of a Giardia lamblia cysteine desulfurase conforms to canonical pattern of mitochondrial ancestry. FEMS Microbiol Lett 226:257–266PubMedCrossRefGoogle Scholar
  39. Flegontov P, Michalek J, Janouskovec J, Lai DH, Jirku M, Hajduskova E, Tomcala A, Otto TD, Keeling PJ, Pain A, Obornik M, Lukeš J (2015) Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 32:1115–1131PubMedCrossRefGoogle Scholar
  40. Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, Nakjang S, Long S, Sendra K, Bill E, Heinz E, Hirt RP, Lucocq JM, Embley TM, Lill R (2017) Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun 8:13932PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitology 102:17–26PubMedCrossRefGoogle Scholar
  42. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14:1113–1126PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fukasawa Y, Oda T, Tomii K, Imai K (2017) Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol 34:1574–1586PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gaechter V, Schraner E, Wild P, Hehl AB (2008) The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9:57–71PubMedCrossRefGoogle Scholar
  45. Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592:63–77PubMedCrossRefGoogle Scholar
  46. Gari K, Leon Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ (2012) MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 337:243–245PubMedCrossRefGoogle Scholar
  47. Gerber J, Mühlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4:906–911PubMedPubMedCentralCrossRefGoogle Scholar
  48. Germot A, Philippe H, Le Guyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci U S A 93:14614–14617PubMedPubMedCentralCrossRefGoogle Scholar
  49. Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168PubMedCrossRefGoogle Scholar
  50. Ghosh S, Field J, Rogers R, Hickman M, Samuelson J (2000) The Entamoeba histolytica mitochondrion-derived organelle (crypton) contains double-stranded DNA and appears to be bound by a double membrane. Infect Immun 68:4319–4322PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gill EE, Diaz-Trivino S, Barbera MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66:1306–1320PubMedCrossRefGoogle Scholar
  52. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452:624–628PubMedCrossRefGoogle Scholar
  54. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–393PubMedCrossRefGoogle Scholar
  55. Hashimoto T (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci U S A 95:6860–6865PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hatefi Y, Yamaguchi M (1996) Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation. FASEB J 10:444–452PubMedCrossRefGoogle Scholar
  57. Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Mühlenhoff U, Lill R (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci U S A 102:3266–3271PubMedPubMedCentralCrossRefGoogle Scholar
  58. Heinz E, Williams TA, Nakjang S, Noel CJ, Swan DC, Goldberg AV, Harris SR, Weinmaier T, Markert S, Becher D, Bernhardt J, Dagan T, Hacker C, Lucocq JM, Schweder T, Rattei T, Hall N, Hirt RP, Embley TM (2012) The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 8:e1002979PubMedPubMedCentralCrossRefGoogle Scholar
  59. Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21:68–74PubMedCrossRefGoogle Scholar
  60. Herrera MG, Pignataro MF, Noguera ME, Cruz KM, Santos J (2018) Rescuing the rescuer: on the protein complex between the human mitochondrial acyl carrier protein and ISD11. ACS Chem Biol 13:1455–1462PubMedCrossRefGoogle Scholar
  61. Hine PM, Bower SM, Meyer GR, Cochennec-Laureau N, Berthe FC (2001) Ultrastructure of Mikrocytos mackini, the cause of Denman Island disease in oysters Crassostrea spp. and Ostrea spp. in British Columbia, Canada. Dis Aquat Organ 45:215–227PubMedCrossRefGoogle Scholar
  62. Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A 96:580–585PubMedPubMedCentralCrossRefGoogle Scholar
  63. Horner DS, Hirt RP, Kilvington S, Lloyd D, Embley TM (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc R Soc Lond Ser B Biol Sci 263:1053–1059CrossRefGoogle Scholar
  64. Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709PubMedCrossRefGoogle Scholar
  65. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213PubMedCrossRefGoogle Scholar
  66. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, Hrdy I, Sedinova M, Marcincikova M, Voleman L, Perry AJ, Beltran NC, Lithgow T, Tachezy J (2011) The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6:e17285PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jerlstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svard SG (2013) Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 4:2493PubMedPubMedCentralCrossRefGoogle Scholar
  69. Johnson D, Dean D (2004) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74:247–281CrossRefGoogle Scholar
  70. Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrzelkova R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudova M, Doležal P, Stairs CW, Roger AJ, Elias M, Dacks JB, Vlček C, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284PubMedCrossRefGoogle Scholar
  71. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453PubMedCrossRefGoogle Scholar
  72. Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13:1297–1305PubMedCrossRefGoogle Scholar
  73. Keithly JS, Langreth SG, Buttle KF, Mannella CA (2005) Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 52:132–140PubMedCrossRefGoogle Scholar
  74. Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498PubMedCrossRefGoogle Scholar
  75. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–3989PubMedPubMedCentralCrossRefGoogle Scholar
  76. Komiya T, Rospert S, Koehler C, Looser R, Schatz G, Mihara K (1998) Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the ‘acid chain’ hypothesis. EMBO J 17:3886–3898PubMedPubMedCentralCrossRefGoogle Scholar
  77. Komuniecki PR, Johnson J, Kamhawi M, Komuniecki R (1993) Mitochondrial heterogeneity in the parasitic nematode, Ascaris suum. Exp Parasitol 76:424–437PubMedCrossRefGoogle Scholar
  78. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467PubMedCrossRefGoogle Scholar
  79. LaGier MJ, Tachezy J, Stejskal F, Kutišová K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519–3530PubMedCrossRefGoogle Scholar
  80. Lange H, Lisowsky T, Gerber J, Mühlenhoff U, Kispal G, Lill R (2001) An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep 2:715–720PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lei C, Rider SD Jr, Wang C, Zhang H, Tan X, Zhu G (2010) The apicomplexan Cryptosporidium parvum possesses a single mitochondrial-type ferredoxin and ferredoxin:NADP+ reductase system. Protein Sci 19:2073–2084PubMedPubMedCentralCrossRefGoogle Scholar
  82. Leon-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology 150:1245–1250PubMedCrossRefGoogle Scholar
  83. Li J, Kogan M, Knight SA, Pain D, Dancis A (1999) Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 274:33025–33034PubMedCrossRefGoogle Scholar
  84. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lill R, Mühlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Ann Rev Cell Dev Biol 22:457–486CrossRefGoogle Scholar
  86. Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G (1999) The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol Chem 380:1157–1166PubMedCrossRefGoogle Scholar
  87. Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stumpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291PubMedCrossRefGoogle Scholar
  88. Lindmark DG (1980) Energy metabolism of the anaerobic protozoon Giardia lamblia. Mol Biochem Parasitol 1:1–12PubMedCrossRefGoogle Scholar
  89. Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L (2016) Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 17:1006PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lloyd D, Ralphs JR, Harris JC (2002) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148:727–733PubMedCrossRefGoogle Scholar
  91. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205PubMedPubMedCentralCrossRefGoogle Scholar
  92. Makki A, Rada P, Zarsky V, Kereiche S, Kovacik L, Novotny M, Jores T, Rapaport D, Tachezy J (2019) Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 17:e3000098PubMedPubMedCentralCrossRefGoogle Scholar
  93. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2009) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12:331–342PubMedCrossRefGoogle Scholar
  94. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  95. Martincová E, Voleman L, Pyrih J, Žárský V, Vondračková P, Kolísko M, Tachezy J, Doležal P (2015) Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol 35:2864–2874PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mercer NA, McKelvey JR, Fioravanti CF (1999) Hymenolepis diminuta: catalysis of transmembrane proton translocation by mitochondrial NADPH–>NAD transhydrogenase. Exp Parasitol 91:52–58PubMedCrossRefGoogle Scholar
  97. Mi-ichi F, Abu YM, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106:21731–21736PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mi-ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T, Hara H, Nozaki T, Yoshida H (2015a) Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci U S A 112:E2884–E2890PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mi-ichi F, Nozawa A, Yoshida H, Tozawa Y, Nozaki T (2015b) Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3′-phosphoadenosine 5′-phosphosulfate and ATP. Eukaryot Cell 14:1144–1150PubMedPubMedCentralCrossRefGoogle Scholar
  100. Miller CN, Josse L, Tsaousis AD (2018) Localization of Fe-S biosynthesis machinery in Cryptosporidium parvum mitosome. J Eukaryot Microbiol 65:913–922PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646PubMedPubMedCentralCrossRefGoogle Scholar
  102. Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML (2001) Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18:530–541PubMedCrossRefGoogle Scholar
  103. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nasta V, Giachetti A, Ciofi-Baffoni S, Banci L (2017) Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochim Biophys Acta Gen Subj 1861:2119–2131PubMedCrossRefGoogle Scholar
  105. Netz DJA, Pierik AJ, Stuempfig M, Mühlenhoff U, Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3:278–286PubMedCrossRefGoogle Scholar
  106. Netz DJ, Stumpfig M, Dore C, Mühlenhoff U, Pierik AJ, Lill R (2010) Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat Chem Biol 6:758–765PubMedCrossRefGoogle Scholar
  107. Nishi M, Hu K, Murray JM, Roos DS (2008) Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci 121:1559–1568PubMedCrossRefGoogle Scholar
  108. Nohýnkova E, Tůmova P, Kulda J (2006) Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryot Cell 5:753–761PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nývltová E, Sutak R, Harant K, Šedinová M, Hrdy I, Pačes J, Vlček C, Tachezy J (2013) NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 110:7371–7376PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nývltová E, Stairs CW, Hrdý I, Ridl J, Mach J, Pačes J, Roger AJ, Tachezy J (2015) Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 32:1039–1055PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ogbadoyi EO, Robinson DR, Gull K (2003) A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14:1769–1779PubMedPubMedCentralCrossRefGoogle Scholar
  112. Olson JW, Agar JN, Johnson MK, Maier RJ (2000) Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39:16213–16219PubMedCrossRefGoogle Scholar
  113. Orozco E, Baez-Camargo M, Riveron AM, Gharibeh R, Gariglio P, de la Cruz HF, Chavez P (1997) A model for unscheduled DNA replication in Entamoeba histolytica trophozoites. Arch Med Res 28 Spec No:24–26Google Scholar
  114. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pala ZR, Saxena V, Saggu GS, Garg S (2018) Recent advances in the [Fe-S] cluster biogenesis (SUF) pathway functional in the apicoplast of Plasmodium. Trends Parasitol 34:800–809PubMedCrossRefGoogle Scholar
  116. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12:565–573PubMedPubMedCentralCrossRefGoogle Scholar
  117. Paul VD, Lill R (2015) Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim Biophys Acta 1853:1528–1539PubMedCrossRefGoogle Scholar
  118. Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20:267–284PubMedCrossRefGoogle Scholar
  119. Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18PubMedCrossRefGoogle Scholar
  120. Py B, Gerez C, Angelini S, Planel R, Vinella D, Loiseau L, Talla E, Brochier-Armanet C, Garcia SR, Latour JM, Ollagnier-de CS, Fontecave M, Barras F (2012) Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier. Mol Microbiol 86:155–171PubMedCrossRefGoogle Scholar
  121. Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, Haindrich AC, Doležal P, Lukeš J, Roger A, Tachezy J (2016) Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol 102:701–714PubMedCrossRefGoogle Scholar
  122. Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fiser R, Seydlova G, Roger A, Kolísko M, Doležal P (2018) A Single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol 10:2813–2822PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rada P, Šmíd O, Sutak R, Doležal P, Pyrih J, Žárský V, Montagne JJ, Hrdý I, Camadro JM, Tachezy J (2009) The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot Cell 8:1584–1591PubMedPubMedCentralCrossRefGoogle Scholar
  124. Reeves RE, Warren LG, Susskind B, Lo H-S (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731PubMedGoogle Scholar
  125. Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563PubMedCrossRefGoogle Scholar
  126. Riordan CE, Langreth SG, Sanchez LB, Kayser O, Keithly JS (1999) Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J Euk Microbiol 46:52S–55SPubMedGoogle Scholar
  127. Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147PubMedCrossRefGoogle Scholar
  128. Rodriguez MA, Garcia-Perez RM, Mendoza L, Sanchez T, Guillen N, Orozco E (1998) The pyruvate:ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb Pathogen 25:1–10CrossRefGoogle Scholar
  129. Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  130. Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE (2003) A novel eukaryotic factor for cytosolic Fe-S cluster assembly. EMBO J 22:4826–4835PubMedPubMedCentralCrossRefGoogle Scholar
  131. Saitoh T, Igura M, Obita T, Ose T, Kojima R, Maenaka K, Endo T, Kohda D (2007) Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J 26:4777–4787PubMedPubMedCentralCrossRefGoogle Scholar
  132. Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125:2095–2104PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schaedler TA, Thornton JD, Kruse I, Schwarzlander M, Meyer AJ, van Veen HW, Balk J (2014) A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J Biol Chem 289:23264–23274PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schatz G (1997) Just follow the acid chain. Nature 388:121–122PubMedCrossRefGoogle Scholar
  135. Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K (2005) The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24:4029–4040PubMedPubMedCentralCrossRefGoogle Scholar
  136. Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434.  https://doi.org/10.1016/j.ijpara.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Schuler MH, Lewandowska A, Caprio GD, Skillern W, Upadhyayula S, Kirchhausen T, Shaw JM, Cunniff B (2017) Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol Biol Cell 28:2159–2169PubMedPubMedCentralCrossRefGoogle Scholar
  138. Schulz C, Schendzielorz A, Rehling P (2015) Unlocking the presequence import pathway. Trends Cell Biol 25:265–275PubMedCrossRefGoogle Scholar
  139. Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci U S A 97:9009–9014PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shan Y, Napoli E, Cortopassi G (2007) Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16:929–941PubMedCrossRefGoogle Scholar
  141. Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S, Elsasser HP, Wittig I, Balk J, Brandt U, Lill R (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsasser HP, Mühlenhoff U, Lill R (2012) The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23:1157–1166PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277:26944–26949PubMedCrossRefGoogle Scholar
  144. Slapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Euk Cell 3:483–494CrossRefGoogle Scholar
  145. Šmíd O, Horáková E, Vilímová V, Hrdý I, Cammack R, Horvath A, Lukeš J, Tachezy J (2006) Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem 281:28679–28686PubMedCrossRefGoogle Scholar
  146. Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M, Horváthová L, Hrdý I, Kutějová E, Hirt RP, Embley TM, Janata J, Tachezy J (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Biol 1:457–463Google Scholar
  148. Srinivasan V, Netz DJ, Webert H, Mascarenhas J, Pierik AJ, Michel H, Lill R (2007) Structure of the yeast WD40 domain protein Cia1, a component acting late in iron-sulfur protein biogenesis. Structure 15:1246–1257PubMedCrossRefGoogle Scholar
  149. Stairs CW, Najdrová V, Krupičková A, Voleman L, Svard SG, Ettema TJG, Doležal P (2018) Identification of a BolA-like protein in Giardia intestinalis: a new Fe-S cluster assembly factor in mitomes. Paper presented at ISEP 2018, Droushia, Cyprus, 27 May–1 June 2018Google Scholar
  150. Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77PubMedCrossRefGoogle Scholar
  151. Stehling O, Mascarenhas J, Vashisht AA, Sheftel AD, Niggemeyer B, Rosser R, Pierik AJ, Wohlschlegel JA, Lill R (2018) Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab 27:263PubMedCrossRefGoogle Scholar
  152. Straub SP, Stiller SB, Wiedemann N, Pfanner N (2016) Dynamic organization of the mitochondrial protein import machinery. Biol Chem 397:1097–1114PubMedCrossRefGoogle Scholar
  153. Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151:1423–1434PubMedPubMedCentralCrossRefGoogle Scholar
  154. Tachezy J, Doležal P (2007) Iron-sulfur proteins and iron-sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. 1:105–133Google Scholar
  155. Tachezy J, Sanchez LB, Müller M (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928PubMedCrossRefGoogle Scholar
  156. Takahashi Y, Tokumoto U (2002) A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 277:28380–28383PubMedCrossRefGoogle Scholar
  157. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158PubMedCrossRefGoogle Scholar
  158. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021CrossRefGoogle Scholar
  159. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176PubMedCrossRefGoogle Scholar
  160. Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453:553–556PubMedCrossRefGoogle Scholar
  161. Tsaousis AD, Gentekaki E, Eme L, Gaston D, Roger AJ (2014) Evolution of the cytosolic iron-sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. Euk Cell 13:143–153CrossRefGoogle Scholar
  162. Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, Gonnelli L, Mühlenhoff U, Banci L, Lill R (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. Elife 5:e16673PubMedPubMedCentralCrossRefGoogle Scholar
  163. Vaidya AB, Mather MW (2009) Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol 63:249–267PubMedCrossRefGoogle Scholar
  164. van der Giezen M, Cox S, Tovar J (2004) The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4:7PubMedPubMedCentralCrossRefGoogle Scholar
  165. van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol 57:405–419PubMedCrossRefGoogle Scholar
  166. van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30:596–630PubMedCrossRefGoogle Scholar
  167. Vávra J (1976) Structure of the microsporidia. In: Bulla LA, Cheng TC (eds) Biology of microsporidia. Springer, Boston, pp 1–86Google Scholar
  168. Vávra J (2005) “Polar vesicles” of microsporidia are mitochondrial remnants (“mitosomes”)? Folia Parasitol 52:193–195PubMedCrossRefGoogle Scholar
  169. Vávra J, Hyliš M, Fiala I, Nebesářová J (2016) Globulispora mitoportans n. g., n. sp., (Opisthosporidia: Microsporidia) a microsporidian parasite of daphnids with unusual spore organization and prominent mitosome-like vesicles. J Invertebr Pathol 135:43–52PubMedCrossRefGoogle Scholar
  170. Vickerman K (1985) Development cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114PubMedCrossRefGoogle Scholar
  171. Voleman L, Najdrová V, Astvaldsson A, Tůmová P, Einarsson E, Svindrych Z, Hagen GM, Tachezy J, Svard SG, Doležal P (2017) Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol 15:27PubMedPubMedCentralCrossRefGoogle Scholar
  172. von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5:1335–1342CrossRefGoogle Scholar
  173. Voos W, Martin H, Krimmer T, Pfanner N (1999) Mechanisms of protein translocation into mitochondria. Biochim Biophys Acta 1422:235–254PubMedCrossRefGoogle Scholar
  174. Waller RF, Jabbour C, Chan NC, Celik N, Likic VA, Mulhern TD, Lithgow T (2009) Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. Eukaryot Cell 8:19–26PubMedCrossRefGoogle Scholar
  175. Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U, Amlacher S, Hurt E, Mühlenhoff U, Banci L, Lill R (2014) Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat Commun 5:5013PubMedCrossRefGoogle Scholar
  176. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714PubMedCrossRefPubMedCentralGoogle Scholar
  177. Wiedemann N, Frazier AE, Pfanner N (2004) The protein import machinery of mitochondria. J Biol Chem 279:14473–14476PubMedCrossRefGoogle Scholar
  178. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869PubMedCrossRefGoogle Scholar
  179. Wilson RJM, Rangachari K, Saldanha JW, Rickman L, Buxton RS, Eccleston JF (2003) Parasite plastids: maintenance and functions. Phil Trans R Soc Lond Ser B Biol Sci 358:155–162CrossRefGoogle Scholar
  180. Yaffe MP, Stuurman N, Vale RD (2003) Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci U S A 100:11424–11428PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T (2002) Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111:519–528PubMedCrossRefGoogle Scholar
  182. Youssef NN, Hammond D (1971) The fine structure of the developmental stages of the microsporidian Nosema apis Zander. Tissue Cell 3:283–294PubMedCrossRefGoogle Scholar
  183. Yousuf MA, Mi-ichi F, Nakada-Tsukui K, Nozaki T (2010) Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. Eukaryot Cell 9:926–933PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yu Y, Samuelson J (1994) Primary structure of an Entamoeba histolytica nicotinamide nucleotide transhydrogenase. Mol Biochem Parasitol 68:323–328PubMedCrossRefGoogle Scholar
  185. Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science, BIOCEV, Department of ParasitologyCharles UniversityVestecCzech Republic

Personalised recommendations