Advertisement

The Proteome of T. vaginalis Hydrogenosomes

  • Petr Rada
  • Jan TachezyEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Trichomonas vaginalis and related organisms of Parabasalia group possess anaerobic forms of mitochondria named hydrogenosomes. These organelles lost most of mitochondrial pathways during adaptation to anaerobic lifestyle. Proteomic analysis of hydrogenosomes purified from T. vaginalis and more recently from Pentatrichomonas hominis revealed that trichomonad hydrogenosomes consist of about 600 proteins, which is about half of proteins present in yeast mitochondria. Matrix proteins of known function that account for about 19% of the proteome include enzymes of energy metabolism, components of Fe-S cluster assembly, oxygen and xenobiotic stress response, amino acid metabolism, proteolytic enzymes, and chaperones. Approximately 11% of the proteome represent membrane components of protein import machinery and other membrane proteins. Three large protein groups consist of hypothetical proteins (20%), miscellaneous proteins (16%), and proteins that might be associated with outer hydrogenosomal membrane (34%). The proteome is highly redundant, which reflects the presence of multiple gene copies for most of proteins in trichomonad genome. Interestingly, most of paralogues are expressed and identified in the proteome. However, the protein level of individual paralogues is rather variable, and iron availability appears to be an important factor in regulation of the proteome composition.

Notes

Acknowledgments

Research in the J.T. laboratory is supported by the Ministry of Education, Youth and Sports of the Czech Republic project NPU II (LQ1604) and by ERD Funds project CePaViP (CZ.02.1.01/0.0/0.0/16_019/0000759).

References

  1. Akhmanova A, Voncken FGJ, Hosea KM et al (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32:1103–1114PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arendsen AF, Hadden J, Card G et al (1998) The “prismane” protein resolved: X-ray structure at 1.7 Å and multiple spectroscopy of two novel 4Fe clusters. J Biol Inorg Chem 3:81–95CrossRefGoogle Scholar
  3. Barberà MJ, Ruiz-Trillo I, Tufts JYA et al (2010) Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell 9:1913–1924PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beltrán NC, Horváthová L, Jedelský PL et al (2013) Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One 8:e65148PubMedPubMedCentralCrossRefGoogle Scholar
  5. Benchimol M (2001) Hydrogenosome morphological variation induced by fibronectin and other drugs in Trichomonas vaginalis and Tritrichomonas foetus. Parasitol Res 87:215–222PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedPubMedCentralGoogle Scholar
  7. Borgese N, Fasana E (2011) Biochimica et Biophysica Acta Targeting pathways of C-tail-anchored proteins. Biochim Biophys Acta 1808:937–946PubMedCrossRefPubMedCentralGoogle Scholar
  8. Boxma B, de Graaf RM, van der Staay GWM et al (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79CrossRefGoogle Scholar
  9. Bradley PJ, Lahti CJ, Plümper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493PubMedPubMedCentralCrossRefGoogle Scholar
  10. Broers C, Stumm CK, Vogels GD (1991) Axenic cultivation of the anaerobic Free-Living Ciliate Trimyema compressum. J Protozool 38:507–511PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brown MT, Goldstone HMH, Bastida-Corcuera F et al (2007) A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol Microbiol 64:1154–1163PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brul S, Veltman RH, Lombardo MCP, Vogels GD (1994) Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. Biochim Biophys Acta Bioenerg 1183:544–546CrossRefGoogle Scholar
  13. Bunai K, Yamane K (2005) Effectiveness and limitation of two-dimensional gel electrophoresis in bacterial membrane protein proteomics and perspectives. J Chromatogr B 815:227–236CrossRefGoogle Scholar
  14. Burstein D, Gould SB, Zimorski V et al (2012) A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. Eukaryot Cell 11:217–228PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cabeza MS, Guerrero SA, Iglesias AA, Arias DG (2015) New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica. Biochim Biophys Acta Gen Subj 1850:1233–1244CrossRefGoogle Scholar
  16. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257PubMedCrossRefPubMedCentralGoogle Scholar
  17. Carlton JM, Hirt RP, Silva JC et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cerkasovova A, Lukasova G, Cerkasov J, Kulda J (1973) Biochemical characterization of large granule fraction of Tritrichomonas foetus (KV1 strain). J Protozool 20:537Google Scholar
  19. Chacinska A, Koehler CM, Milenkovic D et al (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chio US, Cho H, Shan S-O (2017) Mechanisms of tail-anchored membrane protein targeting and insertion. Annu Rev Cell Dev Biol 33:417–438PubMedPubMedCentralCrossRefGoogle Scholar
  21. Coombs GH, Westrop GD, Suchan P et al (2004) The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J Biol Chem 279:5249–5256PubMedCrossRefPubMedCentralGoogle Scholar
  22. Costello JL, Castro IG, Camões F et al (2017) Predicting the targeting of tail-anchored proteins to subcellular compartments in mammalian cells. J Cell 130:1675–1687Google Scholar
  23. de Graaf RM, Ricard G, van Alen TA et al (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 28:2379–2391PubMedPubMedCentralCrossRefGoogle Scholar
  24. Delgadillo MG, Liston DR, Niazi K, Johnson PJ (1997) Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 94:4716–4720PubMedPubMedCentralCrossRefGoogle Scholar
  25. Doerr A (2019) Single-cell proteomics. Nat Methods 16:20–20PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dyall SD, Dolezal P (2007) Protein import into hydrogenosomes and mitosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes, 1st edn. Springer, Berlin, pp 21–73Google Scholar
  27. Dyall SD, Koehler CM, Delgadillo-Correa MG et al (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dyall SD, Lester DC, Schneider RE et al (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561PubMedCrossRefGoogle Scholar
  29. Dyer BD (1989) Metopus, Cyclidium and Sonderia: ciliates enriched and cultured from sulfureta of a microbial mat community. Biosystems 23:41–51PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dyer P, Dean S, Sunter J (2016) High-throughput gene tagging in Trypanosoma brucei. J Vis Exp 114:e54342Google Scholar
  31. Eliyahu E, Pnueli L, Melamed D et al (2010) Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 30:284–294PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fang Y-K, Chien K-Y, Huang K-Y et al (2016) Responding to a zoonotic emergency with multi-omics research: Pentatrichomonas hominis hydrogenosomal protein characterization with use of RNA sequencing and proteomics. Omi A J Integr Biol 20:662–669CrossRefGoogle Scholar
  33. Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:201–215CrossRefGoogle Scholar
  34. Gao J, Schatton D, Martinelli P et al (2014) CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J Cell Biol 207:213–223PubMedPubMedCentralCrossRefGoogle Scholar
  35. Garg S, Stölting J, Zimorski V et al (2015) Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol 7:2716–2726PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gentle IE, Perry AJ, Alcock FH et al (2007) Conserved motifs reveal details of ancestry and structure in the small Tim chaperones of the mitochondrial intermembrane space. Mol Biol Evol 24:1149–1160PubMedCrossRefGoogle Scholar
  37. Gill EE, Diaz-Triviño S, Barberà MJ et al (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66:1306–1320PubMedCrossRefGoogle Scholar
  38. Gould SB, Woehle C, Kusdian G et al (2013) Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol 43:707–719PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403PubMedPubMedCentralCrossRefGoogle Scholar
  40. Guda P, Guda C, Subramaniam S (2007) Reconstruction of pathways associated with amino acid metabolism in human mitochondria. Genomics Proteomics Bioinformatics 5:166–176PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hackstein JH, Akhmanova A, Boxma B et al (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447CrossRefGoogle Scholar
  42. Hegde RS, Keenan RJ (2011) Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12:787–798PubMedPubMedCentralCrossRefGoogle Scholar
  43. Henze K (2007) The proteome of T. vaginalis hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes, 1st edn. Springer, Berlin, pp 163–178Google Scholar
  44. Horváthová L, Šafaříková L, Basler M et al (2012) Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol 4:1017–1029PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hrdy I, Hirt RP, Dolezal P et al (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622PubMedCrossRefGoogle Scholar
  46. Huang K-Y, Huang P-J, Ku F-M et al (2012) Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun 80:3900–3911PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jerlström-Hultqvist J, Einarsson E, Xu F et al (2013) Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 4:2493PubMedPubMedCentralCrossRefGoogle Scholar
  48. Keeling PJ, Burger G, Durnford DG et al (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kellems RE, Allison VF, Butow RA (1975) Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J Cell Biol 65:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kunji ERS, Crichton PG (2010) Mitochondrial carriers function as monomers. Biochim Biophys Acta Bioenerg 1797:817–831CrossRefGoogle Scholar
  51. Kunji ERS, Aleksandrova A, King MS et al (2016) The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim Biophys Acta Mol Cell Res 1863:2379–2393CrossRefGoogle Scholar
  52. Kutik S, Stojanovski D, Becker L et al (2008) Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132:1011–1024PubMedCrossRefPubMedCentralGoogle Scholar
  53. Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33:2318–2336PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leger MM, Kolisko M, Kamikawa R et al (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092PubMedPubMedCentralCrossRefGoogle Scholar
  55. Leitsch D, Williams CF, Hrdý I (2018) Redox pathways as drug targets in microaerophilic parasites. Trends Parasitol 34:576–589PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728Google Scholar
  57. Lindmark DG, Müller M, Shio H (1975) Hydrogenosomes in Trichomonas vaginalis. J Parasitol 61:552.  https://doi.org/10.2307/3279345 CrossRefGoogle Scholar
  58. Lloyd D, Williams CF (2015) Avoid excessive oxygen levels in experiments with organisms, tissues and cells. Adv Microb Physiol 67:293–314PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lloyd D, Hillman K, Yarlett N, Williams AG (1989) Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions. J Protozool 36:205–213CrossRefGoogle Scholar
  60. Magdeldin S, Enany S, Yoshida Y et al (2014) Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics 11:16PubMedPubMedCentralCrossRefGoogle Scholar
  61. Makki A, Rada P, Žárský V et al (2019) Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 17:e3000098PubMedPubMedCentralCrossRefGoogle Scholar
  62. Maritz JM, Land KM, Carlton JM, Hirt RP (2014) What is the importance of zoonotic trichomonads for human health? Trends Parasitol 30:333–341PubMedCrossRefPubMedCentralGoogle Scholar
  63. Markos A, Miretsky A, Müller M (1993) A glyceraldehyde-3-phosphate dehydrogenase with eubacterial features in the amitochondriate eukaryote, Trichomonas vaginalis. J Mol Evol 37:631–643PubMedCrossRefPubMedCentralGoogle Scholar
  64. Martijn J, Vosseberg J, Guy L et al (2018) Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557:101–105PubMedCrossRefPubMedCentralGoogle Scholar
  65. Marvin-Sikkema FD, Driessen AJM, Gottschal JC, Prins RA (1994) Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix: evidence for a functional relationship with mitochondria. Mycol Res 98:205–212CrossRefGoogle Scholar
  66. Mentel M, Zimorski V, Haferkamp P et al (2008) Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell 7:1750–1757PubMedPubMedCentralCrossRefGoogle Scholar
  67. Morada M, Smid O, Hampl V et al (2011) Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis. Mol Biochem Parasitol 176:51–54PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mukherjee M, Brown MT, McArthur AG, Johnson PJ (2006) Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 5:2062–2071PubMedPubMedCentralCrossRefGoogle Scholar
  69. Murcha MW, Lister R, Ho AYY, Whelan J (2003) Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. Plant Physiol 131:1737–1747PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nývltová E, Šuták R, Harant K et al (2013) NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 110:7371–7376PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nývltová E, Stairs CW, Hrdý I et al (2015) Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 32:1039–1055PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nývltová E, Smutná T, Tachezy J, Hrdý I (2016) OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of Trichomonas vaginalis. Mol Biochem Parasitol 206:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  73. O’Fallon JV, Wright RW, Calza RE, Calza RE (1991) Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. Biochem J 274(Pt 2):595–599PubMedPubMedCentralCrossRefGoogle Scholar
  74. Paul RG, Williams AG, Butler RD (1990) Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol 136:1981–1989CrossRefGoogle Scholar
  75. Peterson KM, Alderete JF (1984) Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J Exp Med 160:398–410PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pütz S, Gelius-Dietrich G, Piotrowski M, Henze K (2005) Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol 142:212–223PubMedCrossRefPubMedCentralGoogle Scholar
  77. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 74:1829–1841PubMedCrossRefPubMedCentralGoogle Scholar
  78. Rada P, Doležal P, Jedelský PL et al (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rada P, Makki AR, Zimorski V et al (2015) N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 14:1264–1275PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rada P, Makki A, Žárský V, Tachezy J (2018) Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol.  https://doi.org/10.1111/mmi.14175 PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rao M, Okreglak V, Chio US et al (2016) Multiple selection filters ensure accurate tail-anchored membrane protein targeting. Elife.  https://doi.org/10.7554/eLife.21301
  82. Rassow J, Dekker PJ, van Wilpe S et al (1999) The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol 286:105–120PubMedCrossRefPubMedCentralGoogle Scholar
  83. Saint-Georges Y, Garcia M, Delaveau T et al (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One 3:e2293PubMedPubMedCentralCrossRefGoogle Scholar
  84. Schneider RE, Brown MT, Shiflett AM et al (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429PubMedPubMedCentralCrossRefGoogle Scholar
  86. Smíd O, Matusková A, Harris SR et al (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243PubMedPubMedCentralCrossRefGoogle Scholar
  87. Smith AC, Robinson AJ (2016) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44:D1258–D1261PubMedCrossRefPubMedCentralGoogle Scholar
  88. Smutna T, Goncalves VL, Saraiva LM et al (2009) Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot Cell 8:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  89. Smutna T, Pilarová K, Tarábek J et al (2014) Novel functions of an iron-sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother 58:3224–3232PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 370:20140326PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sutak R, Dolezal P, Fiumera HL et al (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101:10368–10373PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tachezy J, Sánchez LB, Müller M (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928PubMedCrossRefGoogle Scholar
  93. Tjaden J, Haferkamp I, Boxma B et al (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51:1439–1446PubMedCrossRefPubMedCentralGoogle Scholar
  94. Treberg JR, MacCormack TJ, Lewis JM et al (2007) Intracellular glucose and binding of hexokinase and phosphofructokinase to particulate fractions increase under hypoxia in heart of the amazonian armored catfish (Liposarcus pardalis). Physiol Biochem Zool 80:542–550PubMedCrossRefPubMedCentralGoogle Scholar
  95. van Bruggen JJA, Zwart KB, van Assema RM et al (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7CrossRefGoogle Scholar
  96. Vanacova S, Rasoloson D, Rázga J, Hrdý I, Kulda J, Tachezy J (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53–62PubMedCrossRefPubMedCentralGoogle Scholar
  97. Viscogliosi E, Durieux I, Delgado-Viscogliosi P et al (1996) Phylogenetic implication of iron-containing superoxide dismutase genes from trichomonad species. Mol Biochem Parasitol 80:209–214PubMedCrossRefPubMedCentralGoogle Scholar
  98. Viscogliosi E, Delgado-Viscogliosi P, Gerbod D et al (1998) Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis. FEMS Microbiol Lett 161:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  99. Voncken F, Boxma B, Tjaden J et al (2002) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wang J, Vine CE, Balasiny BK et al (2016) The roles of the hybrid cluster protein, Hcp and its reductase, Hcr, in high affinity nitric oxide reduction that protects anaerobic cultures of Escherichia coli against nitrosative stress. Mol Microbiol 100:877–892PubMedCrossRefPubMedCentralGoogle Scholar
  101. Westrop GD, Goodall G, Mottram JC, Coombs GH (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O -Phosphoserine. J Biol Chem 281:25062–25075PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714PubMedCrossRefPubMedCentralGoogle Scholar
  103. Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–751PubMedPubMedCentralCrossRefGoogle Scholar
  104. Woehle C, Kusdian G, Radine C et al (2014) The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics 15:906PubMedPubMedCentralCrossRefGoogle Scholar
  105. Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200:365–372PubMedPubMedCentralCrossRefGoogle Scholar
  106. Yarlett N, Hann AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol Part B Comp Biochem 74:357–364CrossRefGoogle Scholar
  107. Zimorski V, Major P, Hoffmann K et al (2013) The N-Terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 60:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  108. Zysset-Burri DC, Müller N, Beuret C et al (2014) Genome-wide identification of pathogenicity factors of the free-living amoeba Naegleria fowleri. BMC Genomics 15:496PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of ParasitologyBIOCEV, Charles UniversityVestecCzech Republic

Personalised recommendations