Advertisement

Hydrogenosomes of Anaerobic Ciliates

  • Johannes H. P. Hackstein
  • Rob M. de Graaf
  • Jaap J. van Hellemond
  • Aloysius G. M. TielensEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Ciliates are highly complex unicellular eukaryotes. Most of them live in aerobic environments and possess mitochondria that use oxygen as final electron acceptor. However, in several orders of ciliates, anaerobic species evolved that contain hydrogenosomes, ATP-producing organelles that use protons as final electron acceptor, producing hydrogen in this process. These hydrogenosomes of ciliates have not been studied in the same detail as those of trichomonads and anaerobic fungi. Therefore, generalizations on the characteristics of hydrogenosomes of ciliates are somewhat premature, especially since phylogenetic studies suggest that hydrogenosomes have evolved independently several times in ciliates. In this chapter, the hydrogenosomes of the anaerobic, heterotrichous ciliate Nyctotherus ovalis from the hindgut of cockroaches will mainly be described as these are the ones that are, at the moment, the most thoroughly studied. This was the first hydrogenosome shown to possess a genome, and this genome is clearly of mitochondrial origin. In fact, the hydrogenosome of N. ovalis unites typical mitochondrial features such as a genome and an electron-transport chain with the characteristic hydrogenosomal property, the production of hydrogen. The hydrogenosomal metabolism of N. ovalis will be compared with that of two other ciliates that have been studied in less detail, i.e. the holotrichous rumen ciliate Dasytricha and the free-living plagiopylid ciliate Trimyema. All studies combined show that the hydrogenosomes of anaerobic ciliates are different from those of anaerobic fungi and from the well-studied ones in trichomonads.

References

  1. Akhmanova A, Voncken F, van Alen T, van Hoek A, Boxma B, Vogels G, Veenhuis M, Hackstein JHP (1998) A hydrogenosome with a genome. Nature 396:527–528CrossRefGoogle Scholar
  2. Biagini GA, Hayes AJ, Suller MTE, Winters C, Finlay BJ, Lloyd D (1997) Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143:1623–1629CrossRefGoogle Scholar
  3. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase (PFL) and an alcohol dehydrogenase E (ADHE). Mol Microbiol 51:1389–1399CrossRefGoogle Scholar
  4. Boxma B, deGraaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldon T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79CrossRefGoogle Scholar
  5. Cameron SL, O’Donoghue PJ (2002a) The ultrastructure of Amylovorax dehori tyi comb. Nov. and erection of the Amylovoracidae fam. Nov. (Ciliophora: Trichostomatia). Eur J Protistol 38:29–44CrossRefGoogle Scholar
  6. Cameron SL, O’Donoghue PJ (2002b) The ultrastructure of Macropodinium moiri and revised diagnosis of the Macropodiniidae (Litostomatea: Trichostomatia). Eur J Protistol 38:79–194Google Scholar
  7. Clarke KJ, Finlay BJ, Esteban G, Guhl BE, Embley TM (1993) Cyclidium porcatum N. sp. – a free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur J Protistol 29:262–270CrossRefGoogle Scholar
  8. Corliss JO (1979) The ciliated protozoa: characterization, classification, and guide to the literature. Pergamon Press, LondonGoogle Scholar
  9. De Graaf RM, van Alen TA, Dutilh BE, Kuiper JW, van Zoggel HJ, Huynh MB, Görtz HD, Huynen MA, Hackstein JH (2009) The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus. BMC Genomics 10:514CrossRefGoogle Scholar
  10. De Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 28:2379–2391CrossRefGoogle Scholar
  11. Dong XZ, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838PubMedPubMedCentralGoogle Scholar
  12. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257CrossRefGoogle Scholar
  13. Ellis JE, Mclntyre PS, Saleh M, Williams AG, Lloyd D (1991a) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum. Appl Environ Microbiol 57:1400–1407PubMedPubMedCentralGoogle Scholar
  14. Ellis JE, Mclntyre PS, Saleh M, Williams AG, Lloyd D (1991b) Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol 137:1409–1417CrossRefGoogle Scholar
  15. Ellis JE, Mclntyre PS, Saleh M, Williams AG, Lloyd D (1991c) The influence of ruminal concentrations of O2 and CO2 on fermentative metabolism of the rumen entodiniomorphid ciliate Eudiplodinium maggii. Curr Microbiol 23:245–251CrossRefGoogle Scholar
  16. Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc B Biol Sci 361:1055–1067CrossRefGoogle Scholar
  17. Embley TM, Finlay BJ (1994) The use of small-subunit ribosomal-RNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235CrossRefGoogle Scholar
  18. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630CrossRefGoogle Scholar
  19. Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond Ser B Biol Sci 262:87–93CrossRefGoogle Scholar
  20. Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395CrossRefGoogle Scholar
  21. Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, New YorkGoogle Scholar
  22. Finlay BJ, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314CrossRefGoogle Scholar
  23. Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ (2017) Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 15(9):e2003769CrossRefGoogle Scholar
  24. Gijzen HJ, Broers CAM, Barughare M, Stumm CK (1991) Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57:1630–1634PubMedPubMedCentralGoogle Scholar
  25. Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formickum. Arch Microbiol 150:165–170CrossRefGoogle Scholar
  26. Goosen NK, Van der Drift C, Stumm CK, Vogels GD (1990) End products of metabolism in the anaerobic ciliate Trimyema compressutn. FEMS Microbiol Lett 69:171–175CrossRefGoogle Scholar
  27. Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FGJ (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447CrossRefGoogle Scholar
  28. Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon, van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zool Anal Complex Syst 104:290–302Google Scholar
  29. Hackstein JHP, van Hoek AHAM, Leunissen JAM, Huynen M (2002) Anaerobic ciliates and their methanogenic endosymbionts. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic, Dordrecht, pp 451–464Google Scholar
  30. Hackstein JHP, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245CrossRefGoogle Scholar
  31. Hackstein JHP, Baker SE, van Hellemond JJ, Tielens AGM (2019) Hydrogenosomes of anaerobic fungi: an alternative way to adapt to anaerobic environments. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, HeidelbergGoogle Scholar
  32. Hirt RP, Wilkinson AG, Embley TM (1998) Molecular and cellular evolution of ciliates: a phylogenetic perspective. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Chapman and Hall, London, pp 327–340Google Scholar
  33. Hrdý I, Müller M, Tachezy J (2019) Metabolism of trichomonad hydrogenosomes. In: Tachezy J (ed) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, HeidelbergGoogle Scholar
  34. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405CrossRefGoogle Scholar
  35. Lantsman Y, Tan KS, Morada YN (2008) Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology 154:2757–2766CrossRefGoogle Scholar
  36. Lloyd D, Hillman K, Yarlett N, Williams AG (1989) Hydrogen-production by rumen holotrich protozoa – effects of oxygen and implications for metabolic control by in situ conditions. J Protozool 36:205–213CrossRefGoogle Scholar
  37. Martin W (2005) The missing link between hydrogenosomes and mitochondria. Trends Microbiol 13:457–459CrossRefGoogle Scholar
  38. Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889CrossRefGoogle Scholar
  39. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495CrossRefGoogle Scholar
  40. Paul RG, Williams AG, Butler RD (1990) Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol 136:1981–1989CrossRefGoogle Scholar
  41. Perez-Brocal V, Clark CG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol 25:2475–2482CrossRefGoogle Scholar
  42. Regensbogenova M, McEwan NR, Javorsky P, Kisidayova S, Michalowski T, Newbold CJ, Hackstein JHP, Pristas P (2004) A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol Lett 238:307–313CrossRefGoogle Scholar
  43. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  44. Snyers L, Hellings P, Bovy-Kesler C, Thines-Sempoux D (1982) Occurrence of hydrogenosomes in the rumen ciliates Ophryoscolecidae. FEBS Lett 137:35–39CrossRefGoogle Scholar
  45. Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18(8):580–585CrossRefGoogle Scholar
  46. Struder-Kypke MC, Wright ADG, Foissner W, Chatzinotas A, Lynn DH (2006) Molecular phylogeny of litostome ciliates (Ciliophora, Litostomatea) with emphasis on free-living Haptorian genera. Protist 157:261–278CrossRefGoogle Scholar
  47. Tielens AGM, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572CrossRefGoogle Scholar
  48. Tielens AGM, van Grinsven K, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40:387–397CrossRefGoogle Scholar
  49. Tokura M, Chagan I, Ushida K, Kojima Y (1999) Phylogenetic study of methanogens associated with rumen ciliates. Curr Microbiol 39:123–128CrossRefGoogle Scholar
  50. van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95CrossRefGoogle Scholar
  51. van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7CrossRefGoogle Scholar
  52. van Bruggen JJA, Zwart KB, Hermans JGF, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov, an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374CrossRefGoogle Scholar
  53. van Bruggen JJA, van Rens GLM, Geertman EJM, Zwart KB, Stumm CK, Vogels GD (1988) Isolation of a methanogenic endosymbiont of the sapropelic ameba Pelomyxa palustris Greeff. J Protozool 35:20–23CrossRefGoogle Scholar
  54. van Hoek AHAM, van Alen TA, Sprakel VSI, Hackstein JHP, Vogels GD (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15:1195–1206CrossRefGoogle Scholar
  55. van Hoek AHAM, Sprakel VSI, Van Alen TA, Theuvenet APR, Vogels GD, Hackstein JHP (1999) Voltage-dependent reversal of anodic galvanotaxis in Nyctotherus ovalis. J Eukaryot Microbiol 46:427–433CrossRefGoogle Scholar
  56. van Hoek AHAM, Akhmanova AS, Huynen MA, Hackstein JHP (2000a) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17:202–206CrossRefGoogle Scholar
  57. van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000b) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258CrossRefGoogle Scholar
  58. Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612PubMedPubMedCentralGoogle Scholar
  59. Wawrzyniak I, Roussel M, Diogon M, Couloux A, Texier C, Tan KSW, Vivares CP, Delbac F, Wincker P, El Alaoui H (2008) Complete circular DNA in the mitochondria-like organelles of Blastocystis hominis. Int J Parasitol 38:1377–1382CrossRefGoogle Scholar
  60. Williams AG, Coleman GS (1992) The rumen protozoa. Springer, New YorkCrossRefGoogle Scholar
  61. Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoan Dasytricha ruminantium Schuberg. Biochem J 200:365–372CrossRefGoogle Scholar
  62. Yarlett N, Lloyd D, Williams AG (1982) Respiration of the rumen ciliate Dasytricha ruminantium Schuberg. Biochem 206:259–266CrossRefGoogle Scholar
  63. Yarlett N, Hann AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol B Biochem Mol Biol 74:357–364CrossRefGoogle Scholar
  64. Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21:15–19CrossRefGoogle Scholar
  65. Yarlett N, Lloyd D, Williams AG (1985) Butyrate formation from glucose by the rumen protozoan Dasytricha ruminantium. Biochem J 228:187–192CrossRefGoogle Scholar
  66. Zwart KB, Goosen NK, van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical-localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Johannes H. P. Hackstein
    • 1
  • Rob M. de Graaf
    • 1
  • Jaap J. van Hellemond
    • 2
  • Aloysius G. M. Tielens
    • 2
    • 3
    Email author
  1. 1.Faculty of ScienceInstitute of Water and Wetland Research (IWWR), Radboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Medical Microbiology and Infectious Diseases, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
  3. 3.Faculty of Veterinary Medicine, Department of Biochemistry and Cell BiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations