Advertisement

Protein Import into Hydrogenosomes and Mitosomes

  • Pavel DolezalEmail author
  • Abhijith Makki
  • Sabrina D. Dyall
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

In the past decade, studies on protein targeting to hydrogenosomes and mitosomes have revealed several characteristics in common with mitochondrial protein targeting. Proteins from one system can readily be imported into another, strongly suggesting that targeting signals on hydrogenosomal, mitosomal and mitochondrial preproteins are conserved. By extension, these observations, together with the proposed common origin of hydrogenosomes, mitosomes and mitochondria, led to the proposition that components of the respective protein import machineries for these organelles are conserved. With the advent of complete genome sequence databases for diverse eukaryotes, we are now in a better position to examine this proposition. In this review, we report and integrate the latest experimental and bioinformatics data on the state of protein import in hydrogenosomes, mitosomes and mitochondria.

References

  1. Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100:551–560PubMedCrossRefGoogle Scholar
  2. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedCrossRefGoogle Scholar
  3. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395PubMedCrossRefGoogle Scholar
  4. Adams KL, Daley DO, Qiu Y-L, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354PubMedCrossRefGoogle Scholar
  5. Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M, Likić VA, Traven A, Lithgow T (2012) A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol 29:113–122PubMedCrossRefGoogle Scholar
  6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  7. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alva V, Nam S-Z, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44:W410–W415PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133PubMedCrossRefGoogle Scholar
  10. Andersson GE, Karlberg O, Canbäck B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc London Ser B Biol Sci 358:165–179CrossRefGoogle Scholar
  11. Arisue N, Sánchez LB, Weiss LM, Müller M, Hashimoto T (2002) Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol Int 51:9–16PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baker A, Schatz G (1987) Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci U S A 84:3117–3121PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, Kühlbrandt W (2017) Cryo-EM Structure of the TOM Core Complex from Neurospora crassa. Cell 170:693–700.e7PubMedCrossRefPubMedCentralGoogle Scholar
  15. Beasley EM, Müller S, Schatz G (1993) The signal that sorts yeast cytochrome b2 to the mitochondrial intermembrane space contains three distinct functional regions. EMBO J 12:2303–2311PubMedPubMedCentralCrossRefGoogle Scholar
  16. Becker T, Pfannschmidt S, Guiard B, Stojanovski D, Milenkovic D, Kutik S, Pfanner N, Meisinger C, Wiedemann N (2008) Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J Biol Chem 283:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  17. Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851PubMedCrossRefPubMedCentralGoogle Scholar
  18. Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67:852–862PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bohnert M, Pfanner N, van der Laan M (2007) A dynamic machinery for import of mitochondrial precursor proteins. FEBS Lett 581:2802–2810PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bolliger L, Deloche O, Glick BS, Georgopoulos C, Jeno P, Kronidou N, Horst M, Morishima N, Schatz G (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J 13:1998–2006PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bolliger L, Junne T, Schatz G, Lithgow T (1995) Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J 14:6318–6326PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bömer U, Meijer M, Guiard B, Dietmeier K, Pfanner N, Rassow J (1997) The sorting route of cytochrome b branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J Biol Chem 272:30439–30446PubMedCrossRefGoogle Scholar
  23. Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548PubMedCrossRefGoogle Scholar
  24. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17PubMedCrossRefGoogle Scholar
  25. Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74CrossRefGoogle Scholar
  26. Bozner P (1997) Immunological detection and subcellular localization of Hsp70 and Hsp60 homologs in Trichomonas vaginalis. J Parasitol 83:224–229PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bracha R, Nuchamowitz Y, Mirelman D (2003) Transcriptional silencing of an amoebapore gene in Entamoeba histolytica: molecular analysis and effect on pathogenicity. Eukaryot Cell 2:295–305PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bradley PJ, Lahti CJ, Plumper E, Johnson PJ (1997) Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J 16:3484–3493PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brás XP, Zimorski V, Bolte K, Maier U-G, Martin WF, Gould SB (2013) Knockout of the abundant Trichomonas vaginalis hydrogenosomal membrane protein Tv HMP23 increases hydrogenosome size but induces no compensatory up-regulation of paralogous copies. FEBS Lett 587:1333–1339PubMedCrossRefPubMedCentralGoogle Scholar
  30. Brix J, Dietmeier K, Pfanner N (1997) Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem 272:20730–20735PubMedCrossRefPubMedCentralGoogle Scholar
  31. Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N (2000) The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 303:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brondijk TH, Durand R, van der Giezen M, Gottschal JC, Prins RA, Fevre M (1996) scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol Gen Genet 253:315–323PubMedPubMedCentralGoogle Scholar
  33. Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bui ET, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76:305–310PubMedCrossRefGoogle Scholar
  35. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366CrossRefGoogle Scholar
  36. Burri L, Keeling PJ (2007) Protein targeting in parasites with cryptic mitochondria. Int J Parasitol 37:265–272PubMedCrossRefPubMedCentralGoogle Scholar
  37. Burri L, Williams BAP, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A 103:15916–15920PubMedPubMedCentralCrossRefGoogle Scholar
  38. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu C-L, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik S-B, Logsdon JM, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu C-H, Lee Y-S, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  39. Carpenter ML, Cande WZ (2009) Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 8:916–919PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cautain B, Hill R, de Pedro N, Link W (2015) Components and regulation of nuclear transport processes. FEBS J 282:445–462PubMedCrossRefGoogle Scholar
  41. Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci 503:55–71PubMedCrossRefGoogle Scholar
  42. Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C, Geissler A, Sickmann A, Meyer HE, Truscott KN, Guiard B, Pfanner N, Rehling P (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829PubMedCrossRefGoogle Scholar
  43. Chan KW, Slotboom D-J, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ERS, León-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742PubMedCrossRefGoogle Scholar
  44. Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T (2006) The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol 358:1010–1022PubMedCrossRefGoogle Scholar
  45. Cheng MY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neuper W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620PubMedCrossRefGoogle Scholar
  46. Choi C, Liu Z, Adams KL (2006) Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. New Phytol 172:429–439PubMedCrossRefPubMedCentralGoogle Scholar
  47. Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A 92:6518–6521PubMedPubMedCentralCrossRefGoogle Scholar
  48. Clements A, Bursac D, Gatsos X, Perry AJ, Civciristov S, Celik N, Likic VA, Poggio S, Jacobs-Wagner C, Strugnell RA, Lithgow T (2009) The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci U S A 106:15791–15795PubMedPubMedCentralCrossRefGoogle Scholar
  49. Connolly T, Gilmore R (1986) Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein. J Cell Biol 103:2253–2261PubMedCrossRefPubMedCentralGoogle Scholar
  50. Craig EA, Kramer J, Kosic-Smithers J (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc Natl Acad Sci U S A 84:4156–4160PubMedPubMedCentralCrossRefGoogle Scholar
  51. Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM (2004) The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J Biol Chem 279:43744–43751PubMedCrossRefGoogle Scholar
  52. D’Silva PD, Schilke B, Walter W, Andrew A, Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci U S A 100:13839–13844PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T (2009) The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26:1941–1947PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dalbey RE, Lively MO, Bron S, Van Dijl JM (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138PubMedPubMedCentralCrossRefGoogle Scholar
  55. Daley DO, Clifton R, Whelan J (2002) Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci U S A 99:10510–10515PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dan M, Wang AL, Wang CC (2000) Inhibition of pyruvate-ferredoxin oxidoreductase gene expression in Giardia lamblia by a virus-mediated hammerhead ribozyme. Mol Microbiol 36:447–456PubMedCrossRefGoogle Scholar
  57. Davis AJ, Ryan KR, Jensen RE (1998) Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol Biol Cell 9:2577–2593PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dekker PJT, Keil P, Rassow J, Maarse AC, Pfanner N, Meijer M (1993) Identification of MIM23, a putative component of the protein import machinery of the mitochondrial inner membrane. FEBS Lett 330:66–70PubMedCrossRefGoogle Scholar
  59. Delgadillo MG, Liston DR, Niazi K, Johnson PJ (1997) Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 94:4716–4720PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dietmeier K, Honlinger A, Bomer U, Dekker PJ, Eckerskorn C, Lottspeich F, Kubrich M, Pfanner N (1997) Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388:195–200PubMedCrossRefGoogle Scholar
  61. Dolezal P, Smid O, Rada P, Zubacova Z, Bursac D, Sutak R, Nebesarova J, Lithgow T, Tachezy J (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318PubMedCrossRefGoogle Scholar
  63. Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A, Koehler CM, Johnson PJ (2003) Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561PubMedCrossRefGoogle Scholar
  65. Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107PubMedCrossRefGoogle Scholar
  66. Ebneter JA, Heusser SD, Schraner EM, Hehl AB, Faso C (2016) Cyst-Wall-Protein-1 is fundamental for Golgi-like organelle neogenesis and cyst-wall biosynthesis in Giardia lamblia. Nat Commun 7:13859PubMedPubMedCentralCrossRefGoogle Scholar
  67. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763CrossRefGoogle Scholar
  68. Emtage JL, Jensen RE (1993) MAS6 encodes an essential inner membrane component of the yeast mitochondrial protein import pathway. J Cell Biol 122:1003–1012PubMedCrossRefGoogle Scholar
  69. Esser K, Jan P-S, Pratje E, Michaelis G (2004) The mitochondrial IMP peptidase of yeast: functional analysis of domains and identification of Gut2 as a new natural substrate. Mol Gen Genomics 271:616–626CrossRefGoogle Scholar
  70. Falah M, Gupta RS (1994) Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J Bacteriol 176:7748–7753PubMedPubMedCentralCrossRefGoogle Scholar
  71. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37PubMedPubMedCentralCrossRefGoogle Scholar
  72. Folsch H, Guiard B, Neupert W, Stuart RA (1996) Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J 15:479–487PubMedPubMedCentralCrossRefGoogle Scholar
  73. Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE, Bilanchone V, Cumsky MG, Truscott KN, Pfanner N, Rehling P (2004) Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 11:226PubMedCrossRefGoogle Scholar
  74. Freibert S-A, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, Nakjang S, Long S, Sendra K, Bill E, Heinz E, Hirt RP, Lucocq JM, Embley TM, Lill R (2017) Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nat Commun 8:13932PubMedPubMedCentralCrossRefGoogle Scholar
  75. Fukasawa Y, Oda T, Tomii K, Imai K (2017) Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol Biol Evol 34:1574–1586PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gabaldón T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301:609PubMedCrossRefGoogle Scholar
  77. Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta, Mol Cell Res 1592:63–77PubMedCrossRefGoogle Scholar
  78. García-Rodríguez LJ, Gay AC, Pon LA (2007) Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J Cell Biol 176:197–207PubMedPubMedCentralCrossRefGoogle Scholar
  79. Garg SG, Gould SB (2016) The role of charge in protein targeting evolution. Trends Cell Biol 26:894–905PubMedCrossRefGoogle Scholar
  80. Garg S, Stölting J, Zimorski V, Rada P, Tachezy J, Martin WF, Gould SB (2015) Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol 7:2716–2726PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gavel Y, von Heijne G (1990) Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng Des Sel 4:33–37CrossRefGoogle Scholar
  82. Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N, Rehling P (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111:507–518PubMedCrossRefGoogle Scholar
  83. Geli V, Yang MJ, Suda K, Lustig A, Schatz G (1990) The MAS-encoded processing protease of yeast mitochondria. Overproduction and characterization of its two nonidentical subunits. J Biol Chem 265:19216–19222PubMedGoogle Scholar
  84. Gentle I, Gabriel K, Beech P, Waller R, Lithgow T (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gentle IE, Perry AJ, Alcock FH, Likić VA, Dolezal P, Ng ET, Purcell AW, McConnville M, Naderer T, Chanez A-L, Charrière F, Aschinger C, Schneider A, Tokatlidis K, Lithgow T (2007) Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane Space. Mol Biol Evol 24:1149–1160PubMedCrossRefGoogle Scholar
  86. Germot A, Philippe H, Le Guyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci U S A 93:14614–14617PubMedPubMedCentralCrossRefGoogle Scholar
  87. Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168PubMedCrossRefGoogle Scholar
  88. Glaser E, Sjoling S, Tanudji M, Whelan J (1998) Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol 38:311–338PubMedCrossRefGoogle Scholar
  89. Glick BS, Brandt A, Cunningham K, Müller S, Hallberg RL, Schatz G (1992) Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69:809–822PubMedCrossRefGoogle Scholar
  90. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452:624–628PubMedCrossRefGoogle Scholar
  91. Gray MW (2015) Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefGoogle Scholar
  93. Gupta RS (2006) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24:367–402CrossRefGoogle Scholar
  94. Gupta RS (2018) Evolution of the chaperonin families (HSP60, HSP 10 and TCP-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11CrossRefGoogle Scholar
  95. Gupta RS, Singh B (1994) Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4:1104–1114PubMedCrossRefGoogle Scholar
  96. Hahne K, Haucke V, Ramage L, Schatz G (1994) Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell 79:829–839PubMedCrossRefGoogle Scholar
  97. Hartl F-U, Hlodan R, Langer T (1994) Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem Sci 19:20–25PubMedCrossRefGoogle Scholar
  98. Hausler T, Stierhof YD, Blattner J, Clayton C (1997) Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol 73:240–251PubMedGoogle Scholar
  99. Heins L, Schmitz UK (1996) A receptor for protein import into potato mitochondria. Plant J 9:829–839PubMedCrossRefGoogle Scholar
  100. Heinz E, Lithgow T (2013) Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. Biochim Biophys Acta, Mol Cell Res 1833:295–303PubMedCrossRefGoogle Scholar
  101. Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21:68–74PubMedCrossRefGoogle Scholar
  102. Herrmann JM (2003) Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends Microbiol 11:74–79PubMedCrossRefGoogle Scholar
  103. Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395:516PubMedCrossRefGoogle Scholar
  104. Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N (2018) Membrane protein insertion through a mitochondrial β-barrel gate. Science 359:eaah6834PubMedPubMedCentralCrossRefGoogle Scholar
  105. Hönlinger A, Kübrich M, Moczko M, Gärtner F, Mallet L, Bussereau F, Eckerskorn C, Lottspeich F, Dietmeier K, Jacquet M (1995) The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol Cell Biol 15:3382–3389PubMedPubMedCentralCrossRefGoogle Scholar
  106. Hoogenraad NJ, Ward LA, Ryan MT (2002) Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta, Mol Cell Res 1592:97–105PubMedCrossRefGoogle Scholar
  107. Hoppins SC, Nargang FE (2004) The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J Biol Chem 279:12396–12405PubMedCrossRefGoogle Scholar
  108. Horie C, Suzuki H, Sakaguchi M, Mihara K (2002) Characterization of signal that directs C-tail–anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13:1615–1625PubMedPubMedCentralCrossRefGoogle Scholar
  109. Horner DS, Hirt RP, Kilvington S, Lloyd D, Embley TM (1996) Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc Biol Sci 263:1053–1059PubMedCrossRefGoogle Scholar
  110. Horst M, Oppliger W, Rospert S, Schönfeld H, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849PubMedPubMedCentralCrossRefGoogle Scholar
  111. Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Martin Embley T (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618PubMedCrossRefGoogle Scholar
  112. Hrdy I, Müller M (1995a) Primary structure and eubacterial relationships of the pyruvate: ferredoxin oxidoreductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol 41:388–396PubMedCrossRefGoogle Scholar
  113. Hrdy I, Müller M (1995b) Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J Eukaryot Microbiol 42:593–603PubMedCrossRefGoogle Scholar
  114. Hulett JM, Lueder F, Chan NC, Perry AJ, Wolynec P, Likić VA, Gooley PR, Lithgow T (2008) The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J Mol Biol 376:694–704PubMedCrossRefGoogle Scholar
  115. Hwang DK, Claypool SM, Leuenberger D, Tienson HL, Koehler CM (2007) Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion. J Cell Biol 178:1161–1175PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ishikawa D, Yamamoto H, Tamura Y, Moritoh K, Endo T (2004) Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly. J Cell Biol 166:621–627PubMedPubMedCentralCrossRefGoogle Scholar
  117. Janssen BD, Chen Y-P, Molgora BM, Wang SE, Simoes-Barbosa A, Johnson PJ (2018) CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci Rep 8:270PubMedPubMedCentralCrossRefGoogle Scholar
  118. Jarosch E, Rodel G, Schweyen RJ (1997) A soluble 12-kDa protein of the mitochondrial intermembrane space, Mrs11p, is essential for mitochondrial biogenesis and viability of yeast cells. Mol Gen Genet 255:157–165PubMedCrossRefPubMedCentralGoogle Scholar
  119. Johnson PJ, Oliveira CE, Gorrell TE, Müller M (1990) Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 87:6097–6101PubMedPubMedCentralCrossRefGoogle Scholar
  120. Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, Wöhnert J, Kalbacher H, Endo T, Schleiff E, Rapaport D (2016) Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun 7:12036PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kang Y, Baker MJ, Liem M, Louber J, McKenzie M, Atukorala I, Ang C-S, Keerthikumar S, Mathivanan S, Stojanovski D (2016) Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. Elife 5Google Scholar
  122. Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450PubMedCrossRefGoogle Scholar
  123. Kerscher O, Holder J, Srinivasan M, Leung RS, Jensen RE (1997) The Tim54p–Tim22p Complex Mediates Insertion of Proteins into the Mitochondrial Inner Membrane. J Cell Biol 139:1663–1675PubMedPubMedCentralCrossRefGoogle Scholar
  124. Kerscher O, Sepuri NB, Jensen RE, Fox TD (2000) Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11:103–116PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A (2007) A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189:844–850PubMedCrossRefPubMedCentralGoogle Scholar
  126. Koehler CM (2004) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20:309–335PubMedCrossRefPubMedCentralGoogle Scholar
  127. Koehler CM, Murphy MP, Bally NA, Leuenberger D, Oppliger W, Dolfini L, Junne T, Schatz G, Or E (2000) Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol Cell Biol 20:1187–1193PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kovermann P, Truscott KN, Guiard B, Rehling P, Sepuri NB, Müller H, Jensen RE, Wagner R, Pfanner N (2002) Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol Cell 9:363–373PubMedCrossRefPubMedCentralGoogle Scholar
  130. Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K (2004) The J domain–related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol 11:234PubMedCrossRefPubMedCentralGoogle Scholar
  131. Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523PubMedCrossRefPubMedCentralGoogle Scholar
  132. Kumar A, Harrison PM, Cheung K-H, Lan N, Echols N, Bertone P, Miller P, Gerstein MB, Snyder M (2002) An integrated approach for finding overlooked genes in yeast. Nat Biotechnol 20:58–63PubMedCrossRefPubMedCentralGoogle Scholar
  133. Künkele K, Heins S, Dembowski M, Nargang FE, Benz R, Thieffry M, Walz J, Lill R, Nussberger S, Neupert W (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93:1009–1019PubMedCrossRefPubMedCentralGoogle Scholar
  134. LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149:3519–3530PubMedCrossRefGoogle Scholar
  135. Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66:309–318PubMedCrossRefGoogle Scholar
  136. Lahti CJ, d’Oliveira CE, Johnson PJ (1992) Beta-succinyl-coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J Bacteriol 174:6822–6830PubMedPubMedCentralCrossRefGoogle Scholar
  137. Land KM, Delgadillo-Correa MG, Tachezy J, Vanacova S, Hsieh CL, Sutak R, Johnson PJ (2003) Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol Microbiol 51:115–122CrossRefGoogle Scholar
  138. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105PubMedCrossRefPubMedCentralGoogle Scholar
  139. Länge S, Rozario C, Müller M (1994) Primary structure of the hydrogenosomal adenylate kinase of Trichomonas vaginalis and its phylogenetic relationships. Mol Biochem Parasitol 66:297–308PubMedCrossRefGoogle Scholar
  140. Lee CM, Sedman J, Neupert W, Stuart RA (1999) The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 274:20937–20942PubMedCrossRefPubMedCentralGoogle Scholar
  141. Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092PubMedPubMedCentralCrossRefGoogle Scholar
  142. Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W (2004) The presequence translocase-associated protein import motor of mitochondria. J Biol Chem 279:38047–38054PubMedCrossRefPubMedCentralGoogle Scholar
  143. Likić VA, Perry A, Hulett J, Derby M, Traven A, Waller RF, Keeling PJ, Koehler CM, Curran SP, Gooley PR, Lithgow T (2005) Patterns that define the four domains conserved in known and novel isoforms of the protein import receptor Tom20. J Mol Biol 347:81–93PubMedCrossRefGoogle Scholar
  144. Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T (2010) Using hidden Markov models to discover new protein transport machines. Methods Mol Biol 619:271–284PubMedCrossRefGoogle Scholar
  145. Lin L, Pan G, Li T, Dang X, Deng Y, Ma C, Chen J, Luo J, Zhou Z (2012) The protein import pore Tom40 in the microsporidian Nosema bombycis. J Eukaryot Microbiol 59:251–257PubMedCrossRefGoogle Scholar
  146. Linford AS, Moreno H, Good KR, Zhang H, Singh U, Petri WA (2009) Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica. BMC Microbiol 9:38PubMedPubMedCentralCrossRefGoogle Scholar
  147. Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond Ser B Biol Sci 365:799–817CrossRefGoogle Scholar
  148. Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L (2016) Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 17:1006PubMedPubMedCentralCrossRefGoogle Scholar
  149. Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillén N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868PubMedCrossRefGoogle Scholar
  150. Lucattini R, Likic VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21:652–658PubMedCrossRefPubMedCentralGoogle Scholar
  151. Luciano P, Géli V (1996) The mitochondrial processing peptidase: function and specificity. Experientia 52:1077–1082PubMedCrossRefPubMedCentralGoogle Scholar
  152. Maarse AC, Blom J, Grivell LA, Meijer M (1992) MPI1, an essential gene encoding a mitochondrial membrane protein, is possibly involved in protein import into yeast mitochondria. EMBO J 11:3619–3628PubMedPubMedCentralCrossRefGoogle Scholar
  153. Maarse AC, Blom J, Keil P, Pfanner N, Meijer M (1994) Identification of the essential yeast protein MIM17, an integral mitochondrial inner membrane protein involved in protein import. FEBS Lett 349:215–221PubMedCrossRefPubMedCentralGoogle Scholar
  154. Maćasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lithgow T (2004) Tom22’, an 8-kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. Mol Biol Evol 21:1557–1564PubMedCrossRefPubMedCentralGoogle Scholar
  155. Maduke M, Roise D (1993) Import of a mitochondrial presequence into protein-free phospholipid vesicles. Science 260:364–367PubMedCrossRefPubMedCentralGoogle Scholar
  156. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205PubMedPubMedCentralCrossRefGoogle Scholar
  157. Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17CrossRefGoogle Scholar
  158. Makiuchi T, Mi-ichi F, Nakada-Tsukui K, Nozaki T (2013) Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep 3:1129PubMedPubMedCentralCrossRefGoogle Scholar
  159. Makki A, Rada P, Žárský V, Kereïche S, Kováčik L, Novotný M, Jores T, Rapaport D, Tachezy J (2019) Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLoS Biol 17:32CrossRefGoogle Scholar
  160. Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, Schmidt O, Gerbeth C, Meisinger C, Warscheid B, Schneider A (2015) Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun 6:6646PubMedPubMedCentralCrossRefGoogle Scholar
  161. Mani J, Meisinger C, Schneider A (2016) Peeping at TOMs—diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol 33:337–351PubMedCrossRefGoogle Scholar
  162. Manning-Krieg UC, Scherer PE, Schatz G (1991) Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J 10:3273–3280PubMedPubMedCentralCrossRefGoogle Scholar
  163. Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG (2018) Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557:101–105PubMedCrossRefPubMedCentralGoogle Scholar
  164. Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991) Chaperonin-mediated protein folding at the surface of groEL through a ’molten globule’-like intermediate. Nature 352:36–42PubMedCrossRefPubMedCentralGoogle Scholar
  165. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc B Biol Sci 370:20140330CrossRefGoogle Scholar
  166. Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, Tachezy J, Doležal P (2015) Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol 35:2864–2874PubMedPubMedCentralCrossRefGoogle Scholar
  167. Martinez-Caballero S, Grigoriev SM, Herrmann JM, Campo ML, Kinnally KW (2007) Tim17p regulates the twin pore structure and voltage gating of the mitochondrial protein import complex TIM23. J Biol Chem 282:3584–3593PubMedCrossRefPubMedCentralGoogle Scholar
  168. Marvin-Sikkema FD, Kraak MN, Veenhuis M, Gottschal JC, Prins RA (1993) The hydrogenosomal enzyme hydrogenase from the anaerobic fungus Neocallimastix sp. L2 is recognized by antibodies, directed against the C-terminal microbody protein targeting signal SKL. Eur J Cell Biol 61:86–91PubMedPubMedCentralGoogle Scholar
  169. McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, Hinkle G, Crocker MK, Holder ME, Farr R, Reich CI, Olsen GE, Aley SB, Adam RD, Gillin FD, Sogin ML (2000) The Giardia genome project database. FEMS Microbiol Lett 189:271–273PubMedCrossRefGoogle Scholar
  170. McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2:513–519PubMedCrossRefPubMedCentralGoogle Scholar
  171. McInally S, Hagen K, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC (2018) Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 30:119–130PubMedCrossRefGoogle Scholar
  172. Meier S, Neupert W, Herrmann JM (2005) Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J Biol Chem 280:7777–7785PubMedCrossRefGoogle Scholar
  173. Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N, Rehling P (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–1526PubMedCrossRefGoogle Scholar
  174. Meisinger C, Ryan MT, Hill K, Model K, Lim JH, Sickmann A, Müller H, Meyer HE, Wagner R, Pfanner N (2001) Protein import channel of the outer mitochondrial membrane: a highly stable Tom40-Tom22 core structure differentially interacts with preproteins, small tom proteins, and import receptors. Mol Cell Biol 21:2337–2348PubMedPubMedCentralCrossRefGoogle Scholar
  175. Meisinger C, Rissler M, Chacinska A, Szklarz LKS, Milenkovic D, Kozjak V, Schönfisch B, Lohaus C, Meyer HE, Yaffe MP, Guiard B, Wiedemann N, Pfanner N (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell 7:61–71PubMedCrossRefGoogle Scholar
  176. Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T, Stojanovski D, Youngman MJ, Jensen RE, Chacinska A, Guiard B, Pfanner N, Wiedemann N (2007) The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J 26:2229–2239PubMedPubMedCentralCrossRefGoogle Scholar
  177. Ménétret J-F, Schaletzky J, Clemons WM, Osborne AR, Skånland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW (2007) Ribosome binding of a Single copy of the SecY complex: implications for protein translocation. Mol Cell 28:1083–1092PubMedCrossRefGoogle Scholar
  178. Mesecke N, Terziyska N, Kozany C, Baumann F, Neupert W, Hell K, Herrmann JM (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069PubMedCrossRefGoogle Scholar
  179. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106:21731–21736PubMedPubMedCentralCrossRefGoogle Scholar
  180. Milenkovic D, Kozjak V, Wiedemann N, Lohaus C, Meyer HE, Guiard B, Pfanner N, Meisinger C (2004) Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J Biol Chem 279:22781–22785PubMedCrossRefGoogle Scholar
  181. Model K, Meisinger C, Prinz T, Wiedemann N, Truscott KN, Pfanner N, Ryan MT (2001) Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol 8:361–370PubMedCrossRefGoogle Scholar
  182. Model K, Meisinger C, Kühlbrandt W (2008) Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383:1049–1057PubMedCrossRefGoogle Scholar
  183. Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W, Hell K (2003a) Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 22:816–825PubMedPubMedCentralCrossRefGoogle Scholar
  184. Mokranjac D, Sichting M, Neupert W, Hell K (2003b) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956PubMedPubMedCentralCrossRefGoogle Scholar
  185. Morrison HG, Roger AJ, Nystul TG, Gillin FD, Sogin ML (2001) Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18:530–541PubMedCrossRefGoogle Scholar
  186. Müller A, Rassow J, Grimm J, Machuy N, Meyer TF, Rudel T (2002) VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways. EMBO J 21:1916–1929PubMedPubMedCentralCrossRefGoogle Scholar
  187. Mukherjee M, Brown MT, McArthur AG, Johnson PJ (2006a) Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 5:2062–2071PubMedPubMedCentralCrossRefGoogle Scholar
  188. Mukherjee M, Sievers SA, Brown MT, Johnson PJ (2006b) Identification and biochemical characterization of serine hydroxymethyl transferase in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell 5:2072–2078PubMedPubMedCentralCrossRefGoogle Scholar
  189. Murcha MW, Millar AH, Whelan J (2005a) The N-terminal cleavable extension of plant carrier proteins is responsible for efficient insertion into the inner mitochondrial membrane. J Mol Biol 351:16–25PubMedCrossRefGoogle Scholar
  190. Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J (2005b) Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. Plant Physiol 138:2134–2144PubMedPubMedCentralCrossRefGoogle Scholar
  191. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917PubMedCrossRefGoogle Scholar
  192. Nixon JEJ, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J (2002) A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci U S A 99:3701–3705PubMedPubMedCentralCrossRefGoogle Scholar
  193. Nomura H, Athauda SBP, Wada H, Maruyama Y, Takahashi K, Inoue H (2006) Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode. J Biochem 139:967–979PubMedCrossRefGoogle Scholar
  194. Nunnari J, Fox TD, Walter P (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004PubMedCrossRefGoogle Scholar
  195. Nyathi Y, Wilkinson BM, Pool MR (2013) Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim Biophys Acta, Mol Cell Res 1833:2392–2402PubMedCrossRefGoogle Scholar
  196. Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550PubMedCrossRefGoogle Scholar
  197. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40PubMedCrossRefGoogle Scholar
  198. Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M, Hell K, Rapaport D, Neupert W (2003) Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature 426:862–866PubMedCrossRefGoogle Scholar
  199. Paschen SA, Neupert W, Rapaport D (2005) Biogenesis of β-barrel membrane proteins of mitochondria. Trends Biochem Sci 30:575–582PubMedCrossRefGoogle Scholar
  200. Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198PubMedCrossRefGoogle Scholar
  201. Perry AJ, Hulett JM, Likić VA, Lithgow T, Gooley PR (2006) Convergent evolution of receptors for protein import into mitochondria. Curr Biol 16:221–229PubMedCrossRefGoogle Scholar
  202. Peyretaillade E, Broussolle V, Peyret P, Metenier G, Gouy M, Vivares CP (1998) Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin. Mol Biol Evol 15:683–689PubMedCrossRefGoogle Scholar
  203. Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349PubMedCrossRefGoogle Scholar
  204. Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold R (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270PubMedPubMedCentralCrossRefGoogle Scholar
  205. Plümper E, Bradley PJ, Johnson PJ (2000) Competition and protease sensitivity assays provide evidence for the existence of a hydrogenosomal protein import machinery in Trichomonas vaginalis. Mol Biochem Parasitol 106:11–20PubMedCrossRefGoogle Scholar
  206. Putignani L, Tait A, Smith HV, Horner D, Tovar J, Tetley L, Wastling JM (2004) Characterization of a mitochondrion-like organelle in Cryptosporidium parvum. Parasitology 129:1–18PubMedCrossRefGoogle Scholar
  207. Pütz S, Dolezal P, Gelius-Dietrich G, Bohacova L, Tachezy J, Henze K (2006) Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 5:579–586PubMedPubMedCentralCrossRefGoogle Scholar
  208. Pyrihová E, Motyčková A, Voleman L, Wandyszewska N, Fišer R, Seydlová G, Roger A, Kolísko M, Doležal P (2018) A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol 10:2813–2822PubMedPubMedCentralCrossRefGoogle Scholar
  209. Qiu J, Wenz L-S, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, Wirth C, Ellenrieder L, Thornton N, Kutik S, Wiese S, Schulze-Specking A, Zufall N, Chacinska A, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N, Becker T (2013) Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154:596–608PubMedCrossRefGoogle Scholar
  210. Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, Smíšková K, Novotný M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J (2011) The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428PubMedPubMedCentralCrossRefGoogle Scholar
  211. Rada P, Makki AR, Zimorski V, Garg S, Hampl V, Hrdý I, Gould SB, Tachezy J (2015) N-terminal presequence-independent import of phosphofructokinase into hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 14:1264–1275PubMedPubMedCentralCrossRefGoogle Scholar
  212. Rada P, Makki A, Žárský V, Tachezy J (2019) Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol MicrobiolGoogle Scholar
  213. Rassow J, Dekker PJ, van Wilpe S, Meijer M, Soll J (1999) The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol 286:105–120PubMedCrossRefPubMedCentralGoogle Scholar
  214. Rawlings ND, Barrett AJ (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228PubMedCrossRefGoogle Scholar
  215. Regoes A, Egoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563PubMedCrossRefGoogle Scholar
  216. Rehling P, Model K, Brandner K, Kovermann P, Sickmann A, Meyer HE, Kühlbrandt W, Wagner R, Truscott KN, Pfanner N (2003) Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:1747–1751PubMedCrossRefGoogle Scholar
  217. Richards TA, van der Giezen M (2006) Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes. Mol Biol Evol 23:1341–1344PubMedCrossRefGoogle Scholar
  218. Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44:138–147PubMedCrossRefGoogle Scholar
  219. Roger AJ, Clark CG, Doolittle WF (1996) A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 93:14618–14622PubMedPubMedCentralCrossRefGoogle Scholar
  220. Roger AJ, Svärd SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  221. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192CrossRefGoogle Scholar
  222. Röhl T, Motzkus M, Soll J (1999) The outer envelope protein OEP24 from pea chloroplasts can functionally replace the mitochondrial VDAC in yeast. FEBS Lett 460:491–494PubMedCrossRefPubMedCentralGoogle Scholar
  223. Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  224. Rospert S, Junne T, Glick BS, Schatz G (1993) Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett 335:358–360PubMedCrossRefPubMedCentralGoogle Scholar
  225. Rospert S, Looser R, Dubaquie Y, Matouschek A, Glick BS, Schatz G (1996) Hsp60-independent protein folding in the matrix of yeast mitochondria. EMBO J 15:764–774PubMedPubMedCentralCrossRefGoogle Scholar
  226. Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB (2016) An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLoS Pathog 12:e1006036PubMedPubMedCentralCrossRefGoogle Scholar
  227. Ryan KR, Menold MM, Garrett S, Jensen RE (1994) SMS1, a high-copy suppressor of the yeast mas6 mutant, encodes an essential inner membrane protein required for mitochondrial protein import. Mol Biol Cell 5:529–538PubMedPubMedCentralCrossRefGoogle Scholar
  228. Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388:792–798PubMedCrossRefPubMedCentralGoogle Scholar
  229. Sandoval P, León G, Gómez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147PubMedCrossRefPubMedCentralGoogle Scholar
  230. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–1526PubMedCrossRefPubMedCentralGoogle Scholar
  231. Schleyer M, Schmidt B, Neupert W (1982) Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. Eur J Biochem 125:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  232. Schneider A, Behrens M, Scherer P, Pratje E, Michaelis G, Schatz G (1991) Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J 10:247–254PubMedPubMedCentralCrossRefGoogle Scholar
  233. Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434PubMedPubMedCentralCrossRefGoogle Scholar
  234. Shiota T, Imai K, Qiu J, Hewitt VL, Tan K, Shen H-H, Sakiyama N, Fukasawa Y, Hayat S, Kamiya M, Elofsson A, Tomii K, Horton P, Wiedemann N, Pfanner N, Lithgow T, Endo T (2015) Molecular architecture of the active mitochondrial protein gate. Science 349:1544–1548PubMedCrossRefGoogle Scholar
  235. Sirrenberg C, Bauer MF, Guiard B, Neupert W, Brunner M (1996) Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384:582–585PubMedCrossRefGoogle Scholar
  236. Slamovits CH, Fast NM, Law JS, Keeling PJ (2004) Genome compaction and stability in microsporidian intracellular parasites. Curr Biol 14:891–896PubMedCrossRefGoogle Scholar
  237. Slapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494PubMedPubMedCentralCrossRefGoogle Scholar
  238. Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M, Horváthová L, Hrdý I, Kutějová E, Hirt RP, Embley TM, Janata J, Tachezy J (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4:e1000243PubMedPubMedCentralCrossRefGoogle Scholar
  239. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248PubMedPubMedCentralCrossRefGoogle Scholar
  240. Söllner T, Griffiths G, Pfaller R, Pfanner N, Neupert W (1989) MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:1061–1070PubMedCrossRefGoogle Scholar
  241. Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208PubMedCrossRefGoogle Scholar
  242. Stojanovski D, Pfanner N, Wiedemann N (2007) Import of proteins into mitochondria. Methods Cell Biol 80:783–806PubMedCrossRefPubMedCentralGoogle Scholar
  243. Stojanovski D, Bragoszewski P, Chacinska A (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochim Biophys Acta, Mol Cell Res 1823:1142–1150PubMedCrossRefPubMedCentralGoogle Scholar
  244. Stuart R (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  245. Stuart RA, Cyr DM, Craig EA, Neupert W (1994) Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem Sci 19:87–92PubMedCrossRefPubMedCentralGoogle Scholar
  246. Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101:10368–10373PubMedPubMedCentralCrossRefGoogle Scholar
  247. Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 91:10345–10349PubMedPubMedCentralCrossRefGoogle Scholar
  248. Tachezy J, Sánchez LB, Müller M (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928PubMedCrossRefGoogle Scholar
  249. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021CrossRefGoogle Scholar
  250. Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176PubMedCrossRefGoogle Scholar
  251. Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJ, Rassow J, Pfanner N, Wagner R (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat Struct Biol 8:1074–1082PubMedCrossRefPubMedCentralGoogle Scholar
  252. Truscott KN, Voos W, Frazier AE, Lind M, Li Y, Geissler A, Dudek J, Müller H, Sickmann A, Meyer HE, Meisinger C, Guiard B, Rehling P, Pfanner N (2003) A J-protein is an essential subunit of the presequence translocase–associated protein import motor of mitochondria. J Cell Biol 163:707–713PubMedPubMedCentralCrossRefGoogle Scholar
  253. Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ (2011) A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 28:781–791PubMedCrossRefGoogle Scholar
  254. van der Giezen M, Rechinger KB, Svendsen I, Durand R, Hirt RP, Fèvre M, Embley TM, Prins RA (1997) A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Mol Microbiol 23:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  255. van der Giezen M, Kiel JA, Sjollema KA, Prins RA (1998) The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr Genet 33:131–135PubMedCrossRefPubMedCentralGoogle Scholar
  256. van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue G-P, Embley TM, Kunji ERS (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J 21:572–579PubMedPubMedCentralCrossRefGoogle Scholar
  257. van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20:1051–1061PubMedCrossRefPubMedCentralGoogle Scholar
  258. van der Giezen M, León-Avila G, Tovar J (2005) Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica. Microbiology 151:3107–3115PubMedCrossRefPubMedCentralGoogle Scholar
  259. van der Laan M, Chacinska A, Lind M, Perschil I, Sickmann A, Meyer HE, Guiard B, Meisinger C, Pfanner N, Rehling P (2005) Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Mol Cell Biol 25:7449–7458PubMedPubMedCentralCrossRefGoogle Scholar
  260. van der Laan M, Rissler M, Rehling P (2006a) Mitochondrial preprotein translocases as dynamic molecular machines. FEMS Yeast Res 6:849–861PubMedCrossRefPubMedCentralGoogle Scholar
  261. van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N (2006b) A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol 16:2271–2276PubMedCrossRefPubMedCentralGoogle Scholar
  262. van Wilpe S, Ryan MT, Hill K, Maarse AC, Meisinger C, Brix J, Dekker PJ, Moczko M, Wagner R, Meijer M, Guiard B, Hönlinger A, Pfanner N (1999) Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401:485–489PubMedCrossRefPubMedCentralGoogle Scholar
  263. Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y, Cipriano MJ, Striepen B (2015) Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523:477PubMedPubMedCentralCrossRefGoogle Scholar
  264. von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201CrossRefGoogle Scholar
  265. von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545CrossRefGoogle Scholar
  266. Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284:103–112PubMedCrossRefGoogle Scholar
  267. Voos W, Röttgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592:51–62PubMedCrossRefPubMedCentralGoogle Scholar
  268. Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265PubMedCrossRefPubMedCentralGoogle Scholar
  269. Waizenegger T, Habib SJ, Lech M, Mokranjac D, Paschen SA, Hell K, Neupert W, Rapaport D (2004) Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. EMBO Rep 5:704–709PubMedPubMedCentralCrossRefGoogle Scholar
  270. Waizenegger T, Schmitt S, Zivkovic J, Neupert W, Rapaport D (2005) Mim1, a protein required for the assembly of the TOM complex of mitochondria. EMBO Rep 6:57–62PubMedCrossRefGoogle Scholar
  271. Waller RF, Jabbour C, Chan NC, Celik N, Likić VA, Mulhern TD, Lithgow T (2009) Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. Eukaryot Cell 8:19–26PubMedCrossRefGoogle Scholar
  272. Wenz L-S, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, Pfanner N, Wiedemann N, Becker T (2015) Sam37 is crucial for formation of the mitochondrial TOM–SAM supercomplex, thereby promoting β-barrel biogenesis. J Cell Biol 210:1047–1054PubMedPubMedCentralCrossRefGoogle Scholar
  273. Werhahn W, Niemeyer A, Jänsch L, Kruft V, Schmitz UK, Braun H (2001) Purification and characterization of the preprotein translocase of the outer mitochondrial membrane from Arabidopsis. Identification of multiple forms of TOM20. Plant Physiol 125:943–954PubMedPubMedCentralCrossRefGoogle Scholar
  274. Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456PubMedCrossRefGoogle Scholar
  275. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714PubMedCrossRefPubMedCentralGoogle Scholar
  276. Wiedemann N, Pfanner N, Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20:951–960PubMedPubMedCentralCrossRefGoogle Scholar
  277. Wiedemann N, Kozjak V, Chacinska A, Schönfisch B, Rospert S, Ryan MT, Pfanner N, Meisinger C (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571PubMedCrossRefPubMedCentralGoogle Scholar
  278. Wiedemann N, Truscott KN, Pfannschmidt S, Guiard B, Meisinger C, Pfanner N (2004) Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane. J Biol Chem 279:18188–18194PubMedCrossRefPubMedCentralGoogle Scholar
  279. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869PubMedCrossRefGoogle Scholar
  280. Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13:404–411PubMedCrossRefPubMedCentralGoogle Scholar
  281. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388:741–750PubMedCrossRefPubMedCentralGoogle Scholar
  282. Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112PubMedCrossRefGoogle Scholar
  283. Yaffe MP, Ohta S, Schatz G (1985) A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. EMBO J 4:2069–2074PubMedPubMedCentralCrossRefGoogle Scholar
  284. Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T (2002) Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111:519–528PubMedCrossRefGoogle Scholar
  285. Zara V, Dolce V, Capobianco L, Ferramosca A, Papatheodorou P, Rassow J, Palmieri F (2007) Biogenesis of eel liver citrate carrier (CIC): negative charges can substitute for positive charges in the presequence. J Mol Biol 365:958–967PubMedCrossRefPubMedCentralGoogle Scholar
  286. Žárský V, Doležal P (2016) Evolution of the Tim17 protein family. Biol Direct 11:54PubMedPubMedCentralCrossRefGoogle Scholar
  287. Zimorski V, Major P, Hoffmann K, Brás XP, Martin WF, Gould SB (2013) The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 60:89–97PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pavel Dolezal
    • 1
    Email author
  • Abhijith Makki
    • 1
  • Sabrina D. Dyall
    • 2
  1. 1.Faculty of Science, Department of ParasitologyCharles UniversityVestecCzech Republic
  2. 2.Department of Biosciences and Ocean StudiesUniversity of MauritiusRéduitMauritius

Personalised recommendations