The Evolution of Oxygen-Independent Energy Metabolism in Eukaryotes with Hydrogenosomes and Mitosomes

  • Verena Zimorski
  • William F. MartinEmail author
Part of the Microbiology Monographs book series (MICROMONO, volume 9)


Hydrogenosomes and mitosomes are mitochondria in the evolutionary sense because they descend from one and the same bacterial endosymbiont. But the evolutionary significance of eukaryotic anaerobes that possess hydrogenosomes, mitosomes, and anaerobically functioning mitochondria is still an issue of some contention. This chapter serves to further revise the role of oxygen in eukaryote evolution in light of surprising findings about O2 and energetics and in light of what geologists have discovered regarding the timing of oxygen accumulation in Earth history. According to substantial newer findings that geologists have been reporting for about 20 years, the Proterozoic witnessed a protracted period of Earth ocean history, during which the oceans were mostly anoxic and often sulfidic. That period started about 2.3 billion years ago and only came to an end about 580 million years ago, perhaps as recently as 450 million years ago. That was the time during which eukaryotes arose and diversified into their major lineages. In light of that, anaerobic eukaryotes with mitochondria are not, in an evolutionary sense, strange, obscure, unexpected, or otherwise out of the ordinary; hence no special or unusual mechanisms are required to explain their origin. They are normal in every respect and so are their mitochondria. The surprise from energetics is not that O2 increases ATP yield from glucose but that the energetic costs for synthesis of cellular building blocks in oxic environments are 13 times greater than in anaerobic environments. Is oxygen overrated? The benefits of O2 are offset by its costs.


  1. Adl SM, Simpson AG, Farmer MA, Andersen RA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451. 10.1111/j.1550-7408.2005.00053.x CrossRefPubMedGoogle Scholar
  2. Allen JF (2015) Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 112:10231–10238. 10.1073/pnas.1500012112 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen CA, van der Giezen M, Allen JF (2007) Origin, function, and transmission of mitochondria. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 39–56. 10.1007/978-3-540-38502-8_3 CrossRefGoogle Scholar
  4. Andersson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541. 10.1016/S1369-5274(99)00013-2 CrossRefPubMedGoogle Scholar
  5. Andersson SGE, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B 358:165–177. 10.1098/rstb.2002.1193 CrossRefGoogle Scholar
  6. Andersson JO, Sjogren AM, Horner DS, Murphy CA et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51. 10.1186/1471-2164-8-51 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arndt N, Nisbet E (2012) Processes on the young Earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549. 10.1146/annurev-earth-042711-105316 CrossRefGoogle Scholar
  8. Atteia A, van Lis R, Mendoza-Hernández G, Henze K et al (2003) Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria. Plant Mol Biol 53:175–188. 10.1023/B:PLAN.0000009274.19340.36 CrossRefPubMedGoogle Scholar
  9. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A et al (2006) Pyruvate:formate lyase and a novel route of eukaryotic ATP-synthesis in anaerobic Chlamydomonas mitochondria. J Biol Chem 281:9909–9918. 10.1074/jbc.M507862200 CrossRefPubMedGoogle Scholar
  10. Atteia A, van Lis R, Tielens AGM, Martin WF (2013) Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta 1827:210–223. 10.1016/j.bbabio.2012.08.002 CrossRefPubMedGoogle Scholar
  11. Barberà MJ, Ruiz-Trillo I, Leigh J, Hug LA et al (2007) The diversity of mitochondrion-related organelles amongst eukaryotic microbes. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 239–276. 10.1007/978-3-540-38502-8_10 CrossRefGoogle Scholar
  12. Beinart RA, Beaudoin DJ, Bernhard LM, Edgcomb VP (2018) Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. Mol Ecol 27:1794–1807. 10.1111/mec.14465 CrossRefPubMedGoogle Scholar
  13. Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403:77–80. 10.1038/47476 CrossRefPubMedGoogle Scholar
  14. Bexkens ML, Zimorski V, Sarink MJ, Wienk H et al (2018) Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep 25:537–543.e3. 10.1016/j.celrep.2018.09.055 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Biagini GA, van der Giezen M, Hill B, Winters C et al (1994) Ca2+-accumulation in the hydrogenosome of Neocallimastix frontalis: a mitochondrial-like physiological role. FEMS Microbiol Lett 149:227–232. 10.1111/j.1574-6968.1997.tb10333.x CrossRefGoogle Scholar
  16. Biagini GA, Finlay BJ, Lloyd D (1997) The evolution of the hydrogenosome. FEMS Microbiol Lett 155:133–140. 10.1111/j.1574-6968.1997.tb13869.x CrossRefPubMedGoogle Scholar
  17. Blackstone NW (1995) Perspective a units-of-evolution perspective on the endosymbiont theory of the origin of the mitochondrion. Evolution 49:785–796. 10.1111/j.1558-5646.1995.tb02315.x CrossRefPubMedGoogle Scholar
  18. Boxma B, Voncken F, Jannink S, van Alen T et al (2004) The anaerobic chytridiomycete fungus Piromyces spE2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399. 10.1046/j.1365-2958.2003.03912.x CrossRefGoogle Scholar
  19. Bringaud F, Ebikeme C, Boshart M (2010) Acetate and succinate production in amoebae, helminths, diplomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 137:1315–1331. 10.1017/S0031182009991843 CrossRefPubMedGoogle Scholar
  20. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C et al (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548:578–581. 10.1038/nature23457 CrossRefPubMedGoogle Scholar
  21. Brondijk THC, Durand R, van der Giezen M, Gottschal JC et al (1996) scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol Gen Genet 253:315–323. 10.1007/PL00008598 CrossRefPubMedGoogle Scholar
  22. Carlton JM, Hirt RP, Silva JC, Delcher AL et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212. 10.1126/science.1132894 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–468. 10.1038/256463a0 CrossRefGoogle Scholar
  24. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354. 10.1099/00207713-52-2-297 CrossRefPubMedGoogle Scholar
  25. Cavalier-Smith T (2004) Only six kingdoms of life. Proc Biol Sci 271:1251–1262. 10.1098/rspb.2004.2705 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cavalier-Smith T (2007) The chimaeric origin of mitochondria: photosynthetic cell enslavement, gene-transfer pressure, and compartmentation efficiency. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 161–200. 10.1007/978-3-540-38502-8_8 CrossRefGoogle Scholar
  27. Cloud PE Jr (1968) Atmospheric and hydrospheric evolution on the primitive earth. Science 160:729–736. 10.1126/science.160.3829.729 CrossRefPubMedGoogle Scholar
  28. Dacks JB, Dyal PL, Embley TM, van der Giezen M (2006) Hydrogenosomal succinyl-CoA synthetase from the rumen-dwelling fungus Neocallimastix patriciarum; an energy-producing enzyme of mitochondrial origin. Gene 373:75–82. 10.1016/j.gene.2006.01.012 CrossRefPubMedGoogle Scholar
  29. Daines SJ, Mills BJW, Lenton TM (2017) Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat Commun 8:14379. 10.1038/ncomms14379 CrossRefPubMedPubMedCentralGoogle Scholar
  30. de Duve C (1969) Evolution of the peroxisome. Ann N Y Acad Sci 168:369–381. 10.1111/j.1749-6632.1969.tb43124.x CrossRefGoogle Scholar
  31. de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403. 10.1038/nrg2071 CrossRefPubMedGoogle Scholar
  32. de Zwaan A (1991) Molluscs. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 186–217Google Scholar
  33. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318. 10.1126/science.1127895 CrossRefPubMedGoogle Scholar
  34. Doolittle WF (1980) Revolutionary concepts in evolutionary cell biology. Trends Biochem Sci 5:146–149. 10.1016/0968-0004(80)90010-9 CrossRefGoogle Scholar
  35. Doolittle WF (1998) A paradigm gets shifty. Nature 392:15–16. 10.1038/32033 CrossRefPubMedGoogle Scholar
  36. Dyall SD, Yan WH, Delgadillo-Correa MG, Lunceford A et al (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107. 10.1038/nature02990 CrossRefPubMedGoogle Scholar
  37. Edgcomb VP, Leadbetter ER, Bourland W, Beaudoin D et al (2011) Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments? Front Microbiol 2:1–16. 10.3389/fmicb.2011.00055 CrossRefGoogle Scholar
  38. Ellis JE, Lindmark DG, Williams AG, Lloyd D (1994) Polypeptides of hydrogenosome-enriched fractions from rumen ciliate protozoa and trichomonads: Immunological studies. FEMS Microbiol Lett 117:211–216. 10.1016/0378-1097(94)90197-X CrossRefPubMedGoogle Scholar
  39. Embley TM, Finlay BJ (1994) The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235. 10.1099/13500872-140-2-225 CrossRefGoogle Scholar
  40. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630. 10.1038/nature04546 CrossRefGoogle Scholar
  41. Embley TM, Finlay BJ, Dyal PL, Hirt RP et al (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B 262:87–93. 10.1098/rspb.1995.0180 CrossRefGoogle Scholar
  42. Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441. 10.1016/S0169-5347(97)01208-1 CrossRefPubMedGoogle Scholar
  43. Embley TM, van der Giezen M, Horner DS, Dyal PL et al (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395. 10.1080/15216540310001592834 CrossRefGoogle Scholar
  44. Emelyanov VV (2007) Constantin Merezhkowsky and the endokaryotic hypothesis. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 201–238. 10.1007/978-3-540-38502-8_9 CrossRefGoogle Scholar
  45. Erecińska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19. 10.1038/jcbfm.1989.2 CrossRefPubMedGoogle Scholar
  46. Fenchel T, Finlay BJ (eds) (1995) Ecology and evolution in anoxic worlds. Oxford University Press, OxfordGoogle Scholar
  47. Fischer WW, Hemp J, Valentine JS (2016) How did life survive Earth’s great oxygenation? Curr Opin Chem Biol 31:166–178. 10.1016/j.cbpa.2016.03.013 CrossRefPubMedGoogle Scholar
  48. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB et al (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. 10.1016/j.cell.2010.01.032 CrossRefPubMedGoogle Scholar
  49. Gabaldon T, Snel B, van Zimmeren F, Hemrika W et al (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8. 10.1186/1745-6150-1-8 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gelius-Dietrich G, Henze K (2004) Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: a free-radical enzyme system conserved across divergent eukaryotic lineages. J Eukaryot Microbiol 51:456–463. 10.1111/j.1550-7408.2004.tb00394.x CrossRefPubMedGoogle Scholar
  51. Goldberg AV, Molik S, Tsaousis AD, Neumann K et al (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452:624–628. 10.1038/nature06606 CrossRefPubMedGoogle Scholar
  52. Gould SB, Waller RR, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. 10.1146/annurev.arplant.59.032607.092915 CrossRefPubMedGoogle Scholar
  53. Gould SB, Garg S, Martin WF (2016) Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol 24:525–534. 10.1016/j.tim.2016.03.005 CrossRefPubMedGoogle Scholar
  54. Grieshaber M, Hardewig I, Kreutzer U, Pörtner H-O (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147PubMedGoogle Scholar
  55. Hackstein JH, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245. 10.1007/s00294-006-0088-8 CrossRefGoogle Scholar
  56. Hackstein JHP, Tjaden J, Koopman W (2007) Hydrogenosomes (and related organelles, either) are not the same. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 135–160. 10.1007/978-3-540-38502-8_7 CrossRefGoogle Scholar
  57. Hampl V, Stairs CW, Roger AJ (2011) The tangled past of eukaryotic enzymes involved in anaerobic metabolism. Mob Genet Elem 1:71–74. 10.4161/mge.1.1.15588 CrossRefGoogle Scholar
  58. Hanousková P, Táborsky P, Cepicka I (2018) Dactylomonas gen. nov., a novel lineage of heterolobosean flagellates with unique ultrastructure, closely related to the amoeba Selenaion koniopes Park, De Jockheere, Simpson, 2012. J Eukaryot Microbiol 66(1):120–139. 10.1111/jeu.12637 CrossRefPubMedGoogle Scholar
  59. Harder A (2016) The biochemistry of Haemonchus contortus and other parasitic nematodes. Adv Parasitol 93:69–94. 10.1016/bs.apar.2016.02.010 CrossRefPubMedGoogle Scholar
  60. Harish A, Kurland CG (2017) Mitochondria are not captive bacteria. J Theoret Biol 434:88–98. 10.1016/j.biochi.2017.04.013 CrossRefGoogle Scholar
  61. Heifetz PB, Förster B, Osmond CB, Giles LJ et al (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1446. 10.1104/pp.122.4.1439 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hoffmeister M, van der Klei A, Rotte C, van Grinsven KWA et al (2004) Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429. 10.1074/jbc.M400913200 CrossRefPubMedGoogle Scholar
  63. Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22Google Scholar
  64. Holland HD, Beukes N (1990) A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am J Sci 290:1–34CrossRefGoogle Scholar
  65. Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases – ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153. 10.1016/S0968-0004(01)02053-9 CrossRefPubMedGoogle Scholar
  66. Hrdy I, Hirt RP, Dolezal P, Bardonova L et al (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622. 10.1038/nature03149 CrossRefPubMedGoogle Scholar
  67. Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324. 10.1093/molbev/msp237 CrossRefPubMedGoogle Scholar
  68. Javaux EJ, Lepot K (2018) The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci Rev 176:68–86. 10.1016/j.earscirev.2017.10.001 CrossRefGoogle Scholar
  69. Jekely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28:191–198. 10.1002/bies.20369 CrossRefPubMedGoogle Scholar
  70. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926. 10.1126/science.1079894 CrossRefPubMedGoogle Scholar
  71. Katinka MD, Duprat S, Cornillot E, Méténier G et al (2001) The genome of the intracellular parasite, Encephalitozoon cuniculi. Nature 414:450–453. 10.1038/35106579 CrossRefPubMedGoogle Scholar
  72. Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627. 10.1126/science.1585174 CrossRefPubMedGoogle Scholar
  73. Ku C, Nelson-Sathi S, Roettger M, Sousa FL et al (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432. 10.1038/nature14963 CrossRefPubMedGoogle Scholar
  74. Laakso TA, Schrag DP (2017) A theory of atmospheric oxygen. Geobiology 15:366–384. 10.1111/gbi.12230 CrossRefPubMedGoogle Scholar
  75. Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66:309–318. 10.1016/0166-6851(94)90157-0 CrossRefPubMedGoogle Scholar
  76. Lane N (2007) Mitochondria: key to complexity. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 13–38. 10.1007/978-3-540-38502-8_2 CrossRefGoogle Scholar
  77. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934. 10.1038/nature09486 CrossRefPubMedGoogle Scholar
  78. Leger MM, Gawryluk RM, Gray MW, Roger AJ (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 8:e69532. 10.1371/journal.pone.0069532 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33:2318–2336. 10.1093/molbev/msw103 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lenton TM, Dahl TW, Daines SJ, Mills BJW et al (2016) Earliest land plants created modern levels of atmospheric oxygen. Proc Natl Acad Sci U S A 113:9704–9709. 10.1073/pnas.1604787113 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lever MA, Rogers KL, Lloyd KG, Overmann J et al (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39:688–728. 10.1093/femsre/fuv020 CrossRefGoogle Scholar
  82. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728Google Scholar
  83. Lloyd D, Ralphs JR, Harris JC (2002) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148:727–733. 10.1099/00221287-148-3-727 CrossRefPubMedGoogle Scholar
  84. Loftus B, Anderson I, Davies R, Alsmark UC et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868. 10.1038/nature03291 CrossRefPubMedGoogle Scholar
  85. Long JA, Gordon MS (2004) The greatest step in vertebrate history: a paleobiological review of the fish-tetrapod transition. Physiol Biochem Zool 77:700–719. 10.1086/425183 CrossRefPubMedGoogle Scholar
  86. Lu W, Ridgwell A, Thomas E, Hardisty DS et al (2018) Late inception of a resiliently oxygenated upper ocean. Science 361:174–177. 10.1126/science.aar5372 CrossRefPubMedGoogle Scholar
  87. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315. 10.1038/nature13068 CrossRefPubMedGoogle Scholar
  88. Mai ZM, Ghosh S, Frisardi M, Rosenthal B et al (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205. 10.1128/MCB.19.3.2198 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17. 10.1016/j.biochi.2013.11.018 CrossRefPubMedGoogle Scholar
  90. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CTGoogle Scholar
  91. Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc Natl Acad Sci U S A 103:13080–13085. 10.1073/pnas.0604985103 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Martin W (2007) Eukaryote and mitochondrial origins: two sides of the same coin and too much ado about oxygen. In: Falkowski P, Knoll AH (eds) primary producers of the sea. Elsevier, Amsterdam, pp 53–73. 10.1016/B978-012370518-1/50006-0 CrossRefGoogle Scholar
  93. Martin WF (2017a) Too much eukaryote LGT. Bioessays 39. 10.1002/bies.201700115 CrossRefGoogle Scholar
  94. Martin WF (2017b) Unmiraculous facultative anaerobes (comment on DOI 10.1002/bies.201600174). Bioessays 39. 10.1002/bies.201700041
  95. Martin WF (2017c) Physiology, anaerobes, and the origin of mitosing cells 50 years on. J Theor Biol 434:2–10. 10.1016/j.jtbi.2017.01.004 CrossRefPubMedGoogle Scholar
  96. Martin WF (2017d) Symbiogenesis, gradualism and mitochondrial energy in eukaryote evolution. Period Biol 119:141–158. 10.18054/pb.v119i3.5694 CrossRefGoogle Scholar
  97. Martin WF (2018) Eukaryote lateral gene transfer is Lamarckian. Nat Ecol Evol 2:754. 10.1038/s41559-018-0521-7 CrossRefPubMedGoogle Scholar
  98. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41. 10.1038/32096 CrossRefPubMedGoogle Scholar
  99. Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539. 10.1515/BC.2001.187 CrossRefPubMedGoogle Scholar
  100. Martin W, Rotte C, Hoffmeister M, Theissen U et al (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204. 10.1080/1521654031000141231 CrossRefPubMedGoogle Scholar
  101. Martin W, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B 370:20140330. 10.1098/rstb.2014.0330 CrossRefGoogle Scholar
  102. Martin WF, Tielens AGM, Mentel M, Garg SG et al (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiol Mol Biol Rev 81:e00008–e00017. 10.1128/MMBR.00008-17 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mentel M, Martin W (2008) Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond Ser B Biol Sci 363:2717–2729. 10.1098/rstb.2008.0031 CrossRefGoogle Scholar
  104. Merchant SS, Allen MD, Kropat J, Moseley JL et al (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763:578–594. 10.1016/j.bbamcr.2006.04.007 CrossRefPubMedGoogle Scholar
  105. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604 [English translation in Eur J Phycol 34:287–295 (1999) doi:10.1080/09670269910001736342]Google Scholar
  106. Morris JL, Puttick MN, Clark JW, Edwards D et al (2018) The timescale of early land plant evolution. Proc Natl Acad Sci U S A 115:E2274–E2283. 10.1073/pnas.1719588115 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Morrison HG, McArthur AG, Gillin FD, Aley SB et al (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926. 10.1126/science.1143837 CrossRefPubMedGoogle Scholar
  108. Mountfort DO, Orpin CG, Dekker M (1994) Anaerobic fungi: biology, ecology and function. Marcel Dekker, New York, NYGoogle Scholar
  109. Müller M (2003) Energy metabolism. Part I: anaerobic protozoa. In: Marr J (ed) Molecular medical parasitology. Academic, London, pp 125–139. 10.1016/B978-012473346-6/50008-9 CrossRefGoogle Scholar
  110. Müller M (2007) The road to hydrogenosomes. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 1–12. 10.1007/978-3-540-38502-8_1 CrossRefGoogle Scholar
  111. Müller M, Mentel M, van Hellemond JJ, Henze K et al (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. 10.1128/MMBR.05024-11 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Mus F, Dubini A, Seibert M, Posewitz MC et al (2007) Anaerobic acclimation in Chlamydomonas reinhardtii – anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486. 10.1074/jbc.M701415200 CrossRefPubMedGoogle Scholar
  113. Nicholas WL (1991) Interstitial meifauna. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 129–145Google Scholar
  114. Nishiyama T, Hidetoshi S, de Vries J, Buschmann H et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:448–464. 10.1016/j.cell.2018.06.033 CrossRefPubMedGoogle Scholar
  115. Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91. 10.1038/nature05572 CrossRefPubMedGoogle Scholar
  116. Planavsky NJ, Cole DB, Reinhard CT, Diamond C et al (2016) No evidence for high atmospheric oxygen levels 1,400 million years ago. Proc Natl Acad Sci U S A 113:E2550–E2551. 10.1073/pnas.1601925113 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Porter SM, Agic H, Riedman LA (2018) Anoxic ecosystems and early eukaryotes. Emerg Top Life Sci 2:299–309. 10.1042/ETLS20170162 CrossRefGoogle Scholar
  118. Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431:173–177. 10.1038/nature02912 CrossRefPubMedGoogle Scholar
  119. Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA et al (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538. 10.1128/jb.178.6.1532-1538.1996 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Reinhard CT, Planavsky NJ, Olson SL, Lyons TW et al (2016) Earth’s oxygen cycle and the evolution of animal life. Proc Natl Acad Sci U S A 113:8933–8938. 10.1073/pnas.1521544113 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Rensing SA (2018) Great moments in evolution: the conquest of land by plants. Curr Opin Plant Biol 42:49–54. 10.1016/j.pbi.2018.02.006 CrossRefPubMedGoogle Scholar
  122. Reski R (2018) Enabling the water-to-land transition. Nat Plants 4:67–68. 10.1038/s41477-018-0101-5 CrossRefPubMedGoogle Scholar
  123. Rich PR, Maréchal A (2010) The mitochondrial respiratory chain. Essays Biochem 47:1–23. 10.1042/bse0470001 CrossRefPubMedGoogle Scholar
  124. Rotte C, Stejskal F, Zhu G, Keithly JS et al (2001) Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a fusion of pyruvate:ferredoxin oxidoreductase and NADPH-cytochrome P450 reductase. Mol Biol Evol 18:710–720. 10.1093/oxfordjournals.molbev.a003853 CrossRefPubMedGoogle Scholar
  125. Sack L, Zeyl C, Bell G, Sharbel T et al (1994) Isolation of four new strains of Chlamydomonas reinhardtii (chlorophyta) from soil samples. J Phycol 30:770–773. 10.1111/j.0022-3646.1994.00770.x CrossRefGoogle Scholar
  126. Sagan L (1967) On the origin of mitosing cells. J Theoret Biol 14:225–274. 10.1016/0022-5193(67)90079-3 CrossRefGoogle Scholar
  127. Sahoo SK, Planavsky NJ, Kendall B, Wang X et al (2012) Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–549. 10.1038/nature11445 CrossRefPubMedGoogle Scholar
  128. Sanchez LB (1998) Aldehyde dehydrogenase (CoA-acetylating) and the mechanism of ethanol formation in the amitochondriate protist, Giardia lamblia. Arch Biochem Biophys 354:57–64. 10.1006/abbi.1998.0664 CrossRefPubMedGoogle Scholar
  129. Sanchez LB, Müller M (1996) Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate prostist, Giardia lamblia. FEBS Lett 378:240–244. 10.1016/0014-5793(95)01463-2 CrossRefPubMedGoogle Scholar
  130. Sanchez LB, Galperin MY, Müller M (2000) Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming). J Biol Chem 275:5794–5803. 10.1074/jbc.275.8.5794 CrossRefPubMedGoogle Scholar
  131. Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New York, p 255Google Scholar
  132. Sapp J (2007) Mitochondria and their host: morphology to molecular phylogeny. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 57–84. 10.1007/978-3-540-38502-8_4 CrossRefGoogle Scholar
  133. Schneider T, Betz A (1985) Wax ester fermentation in Euglena gracilis T. Factors favouring the synthesis of odd-numbered fatty acids and alcohols. Planta 166:67–73. 10.1007/BF00397387 CrossRefPubMedGoogle Scholar
  134. Schöttler U, Bennet EM (1991) Annelids. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 165–185Google Scholar
  135. Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol 64:409–429. 10.1146/annurev.micro.62.081307.162826 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Stairs CW, Roger AJ, Hampl V (2011) Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol Biol Evol 28:2087–2099. 10.1093/molbev/msr032 CrossRefPubMedGoogle Scholar
  137. Stairs CW, Eme L, Brown MW, Mutsaers C et al (2014) A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 24:1176–1186. 10.1016/j.cub.2014.04.033 CrossRefPubMedGoogle Scholar
  138. Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans Soc Lond B Biol Sci 370:20140326. 10.1098/rstb.2014.0326 CrossRefGoogle Scholar
  139. Steinbüchel A, Müller M (1986) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20:57–60. 10.1016/0166-6851(86)90142-8 CrossRefPubMedGoogle Scholar
  140. Stoeck T, Behnke A, Christen R, Amaral-Zettler L et al (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72. 10.1186/1741-7007-7-72 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Stolper DA, Keller B (2018) A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553:323–327. 10.1038/nature25009 CrossRefPubMedGoogle Scholar
  142. Tachezy J (ed) (2008) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin. 10.1007/978-3-540-76733-6 CrossRefGoogle Scholar
  143. Tachezy J, Dolezal P (2007) Iron–sulfur proteins and iron–sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 105–134. 10.1007/978-3-540-38502-8_6 CrossRefGoogle Scholar
  144. Tashiro T, Ishida A, Hori M, Igisu M et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518. 10.1038/nature24019 CrossRefPubMedGoogle Scholar
  145. Thiergart T, Landan G, Schenk M, Dagan T et al (2012) An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 4:466–485. 10.1093/gbe/evs018 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Tielens AGM (1994) Energy generation in parasitic helminths. Parasitol Today 10:346–352. 10.1016/0169-4758(94)90245-3 CrossRefPubMedGoogle Scholar
  147. Tielens AGM, van Hellemond JJ (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365:71–78. 10.1016/S0005-2728(98)00045-0 CrossRefPubMedGoogle Scholar
  148. Tielens AGM, van Hellemond JJ (2007) Anaerobic mitochondria: properties and origins. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 85–104. 10.1007/978-3-540-38502-8_5 CrossRefGoogle Scholar
  149. Tielens GM, Rotte C, van Hellemond J, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572. 10.1016/S0968-0004(02)02193-X CrossRefGoogle Scholar
  150. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135. 10.1038/nrg1271 CrossRefPubMedGoogle Scholar
  151. Tovar J (2007) Mitosomes of parasitic protozoa: biology and evolutionary significance. In: Martin W, Müller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin, pp 277–300. 10.1007/978-3-540-38502-8_11 CrossRefGoogle Scholar
  152. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021. 10.1046/j.1365-2958.1999.01414.x CrossRefGoogle Scholar
  153. Tovar J, León-Avila G, Sánchez LB, Sutak R et al (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176. 10.1038/nature01945 CrossRefPubMedGoogle Scholar
  154. Townson SM, Upcroft JA, Upcroft P (1996) Characterization and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Mol Biochem Parasitol 79:183–193. 10.1016/0166-6851(96)02661-8 CrossRefPubMedGoogle Scholar
  155. Tucci S, Proksch P, Martin W (2007) Fatty acid biosynthesis in mitochondria of Euglena gracilis. In: Benning C, Ohlrogge J (eds) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global Publishing Company, LLC, Salt Lake City, UT, pp 133–136Google Scholar
  156. Ueno Y, Yamada K, Yoshida N, Maruyama S et al (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519. 10.1038/nature04584 CrossRefPubMedGoogle Scholar
  157. van de Velde S, Mills BJW, Meysman FJR, Lenton TM et al (2018) Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing. Nat Commun 9:2554. 10.1038/s41467-018-04973-4 CrossRefPubMedPubMedCentralGoogle Scholar
  158. van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231. 10.1111/j.1550-7408.2009.00407.x CrossRefPubMedGoogle Scholar
  159. van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530. 10.1038/sj.embor.7400440 CrossRefPubMedPubMedCentralGoogle Scholar
  160. van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225. 10.1016/S0074-7696(05)44005-X CrossRefPubMedGoogle Scholar
  161. van Hellemond JJ, van der Klei A, van Weelden SW, Tielens AG (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond B 358:205–213. 10.1098/rstb.2002.1182 CrossRefGoogle Scholar
  162. van Lis R, Baffert C, Couté Y, Nitschke W et al (2013) Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1. Plant Physiol 161:57–71. 10.1104/pp.112.208181 CrossRefPubMedGoogle Scholar
  163. van Valen LM, Maiorana VC (1980) The archaebacteria and eukaryotic origins. Nature 287:248–250. 10.1038/287248a0 CrossRefPubMedGoogle Scholar
  164. Wallace MW, Hood AS, Shuster A, Greig A et al (2017) Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet Sci Lett 466:12–19. 10.1016/j.epsl.2017.02.046 CrossRefGoogle Scholar
  165. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116. 10.1038/nmicrobiol.2016.116 CrossRefGoogle Scholar
  166. Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 1837:1130–1147. 10.1016/j.bbabio.2013.12.002 CrossRefPubMedGoogle Scholar
  167. Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869. 10.1093/gbe/evu031 CrossRefPubMedGoogle Scholar
  168. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50. 10.1128/MMBR.69.1.12-50.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yarlett N (1994) Fermentation product formation. In: Mountfort DO, Orpin CG (eds) Anaerobic fungi: biology, ecology and function. Marcel Dekker, New York, pp 129–146Google Scholar
  170. Yarlett N, Orpin CG, Munn EA, Yarlett NC et al (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739. 10.1042/bj2360729 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zebe E (1991) Arthropods. In: Bryant C (ed) Metazoan life without oxygen. Chapman and Hall, London, pp 218–237Google Scholar
  172. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. 10.1098/rstb.2014.0330 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Molecular Evolution, Heinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations