Advertisement

Organisms Without Mitochondria, How It May Happen?

  • Vladimír HamplEmail author
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Decades of investigations have clearly shown that protists living in low-oxygen environments possess mitochondria despite their textbook function, oxidative phosphorylation, is usually absent. The presence of these, in some cases, very rudimental mitochondria has been ascribed to their irreplaceable role in the synthesis of FeS clusters, prosthetic groups of several essential proteins. The deep investigation of the oxymonad Monocercomonoides exilis (Preaxostyla, Metamonada) revealed that this organism very likely represents a notable exception, in which the synthesis of FeS clusters runs in the cytosol and mitochondrion is absent. Investigation of a broader spectrum of oxymonads and their relatives provided evidence that the profound reorganisation of FeS cluster synthesis was initiated by a HGT of the bacterial pathway SUF and a loss of the mitochondrial pathway ISC already before the last common ancestor of this clade. This innovation was very likely a preadaptation for (and not a consequence of) the mitochondrial loss, which happened much later and only in the oxymonad lineage. M. exilis and other oxymonads are being further studied because they represent valuable examples relevant to our understanding of the reductive evolution of organelles and to the origin of the eukaryotic cell.

Notes

Acknowledgement

The salary of VH was funded from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771592), from the Centre for research of pathogenicity and virulence of parasites reg. nr.: CZ.02.1.01/0.0/0.0/16_019/0000759, from the Ministry of Education, Youth and Sports of CR within the National Sustainability Program II (Project BIOCEV-FAR) LQ1604 and from the project ‘BIOCEV’ (CZ.1.05/1.1.00/02.0109).

References

  1. Adl SM, Bass D, Lane CE et al (2019) Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 66:4–119PubMedPubMedCentralGoogle Scholar
  2. Braymer JJ, Lill R (2017) Iron–sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 292:12754–12763.  https://doi.org/10.1074/jbc.R117.787101 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brugerolle G, Koenig H, Konig H (1997) Ultrastructure and organization of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. J Eukaryot Microbiol 44:305–313CrossRefGoogle Scholar
  4. Carpenter KJ, Waller RF, Keeling PJ (2008) Surface morphology of Saccinobaculus (Oxymonadida): implications for character evolution and function in oxymonads. Protist 159:209–221.  https://doi.org/10.1016/j.protis.2007.09.002 CrossRefPubMedGoogle Scholar
  5. Cavalier-Smith T (2014) The neomuran revolution and phagotrophic origin of eukaryotes and cilia in the light of intracellular coevolution and a revised tree of life. Cold Spring Harb Perspect Biol 6:a016006.  https://doi.org/10.1101/cshperspect.a016006 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cleveland LR (1950) Hormone-induced sexual cycles of flagellates. IV. Meiosis after syngamy and before nuclear fusion in Notila. J Morphol 87(2):317–347CrossRefGoogle Scholar
  7. Embley TM, Van Der Giezen M, Horner DS et al (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395.  https://doi.org/10.1080/15216540310001592834 CrossRefGoogle Scholar
  8. Hackstein JHP, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245.  https://doi.org/10.1007/s00294-006-0088-8 CrossRefGoogle Scholar
  9. Hadariová L, Vesteg M, Hampl V, Krajčovič J (2017) Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 64:365.  https://doi.org/10.1007/s00294-017-0761-0 CrossRefPubMedGoogle Scholar
  10. Hampl V (2016) Preaxostyla. In: Handbook of the protists. Springer, Cham, pp 1–36Google Scholar
  11. Hampl V, Silberman JD, Stechmann A et al (2008) Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One 3(9):e1383.  https://doi.org/10.1371/journal.pone.0001383 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hampl V, Hug L, Leigh JW et al (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864.  https://doi.org/10.1073/pnas.0807880106 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hampl V, Čepička I, Eliáš M (2018) Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol 27:1–9.  https://doi.org/10.1016/j.tim.2018.10.005 CrossRefGoogle Scholar
  14. Heiss A, Keeling PJ (2006) The phylogenetic position of the oxymonad Saccinobaculus based on SSU rRNA. Protist 157:335–344.  https://doi.org/10.1016/j.protis.2006.05.007 CrossRefPubMedGoogle Scholar
  15. Karnkowska A, Hampl V (2016) The curious case of vanishing mitochondria. Microb Cell 3:491–494.  https://doi.org/10.15698/mic2016.10.531 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Karnkowska A, Vacek V, Zubáčová Z et al (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284.  https://doi.org/10.1016/j.cub.2016.03.053 CrossRefPubMedGoogle Scholar
  17. Keeling PJ, Leander BS (2003) Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol 326:1337–1349CrossRefGoogle Scholar
  18. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–3989.  https://doi.org/10.1093/emboj/18.14.3981 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lane N (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6:35.  https://doi.org/10.1186/1745-6150-6-35 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934.  https://doi.org/10.1038/nature09486 CrossRefPubMedGoogle Scholar
  21. Leander BS, Keeling PJ (2004) Symbiotic innovation in the oxymonad Streblomastix strix. J Eukaryot Microbiol 51:291–300.  https://doi.org/10.1111/j.1550-7408.2004.tb00569.x CrossRefPubMedGoogle Scholar
  22. Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33:2318–2336.  https://doi.org/10.1093/molbev/msw103 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Leger MM, Kolisko M, Kamikawa R et al (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1:0092.  https://doi.org/10.1038/s41559-017-0092 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liapounova NA, Hampl V, Gordon PMK et al (2006) Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. Eukaryot Cell 5:2138–2146.  https://doi.org/10.1128/EC.00258-06 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lill R, Dutkiewicz R, Freibert SA et al (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94:280–291.  https://doi.org/10.1016/j.ejcb.2015.05.002 CrossRefPubMedGoogle Scholar
  26. Maralikova B, Ali V, Nakada-Tsukui K et al (2010) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12:331–342.  https://doi.org/10.1111/j.1462-5822.2009.01397.x CrossRefPubMedGoogle Scholar
  27. Martijn J, Ettema TJG (2013) From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457.  https://doi.org/10.1042/BST20120292 CrossRefPubMedGoogle Scholar
  28. McIntosh JR (1973) The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles. J Cell Biol 56:324–339CrossRefGoogle Scholar
  29. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106:21731–21736.  https://doi.org/10.1073/pnas.0907106106 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nie D (1950) Morphology and taxonomy of the intestinal Protozoa of the Guinea-pig, Cavia porcella. J Morphol 86:381–494.  https://doi.org/10.1002/jmor.1050860302 CrossRefPubMedGoogle Scholar
  31. Noda S, Inoue T, Hongoh Y et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20.  https://doi.org/10.1111/j.1462-2920.2005.00860.x CrossRefPubMedGoogle Scholar
  32. Novák L, Zubáčová Z, Karnkowska A et al (2016) Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evol Biol 16:197.  https://doi.org/10.1186/s12862-016-0771-4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nývltová E, Šuták R, Harant K et al (2013) NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 110:7371–7376.  https://doi.org/10.1073/pnas.1219590110 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Poinar G Jr (2009) Early cretaceous protist flagellates (Parabasalia: Hypermastigia: Oxymonada) of cockroaches (Insecta: Blattaria) in Burmese amber. Cretac Res 30:1066–1072.  https://doi.org/10.1016/j.cretres.2009.03.008 CrossRefGoogle Scholar
  35. Radek R (1994) Monocercomonides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkd 144:373–382.  https://doi.org/10.1016/S0003-9365(11)80240-X CrossRefGoogle Scholar
  36. Roche B, Aussel L, Ezraty B et al (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827:455–469.  https://doi.org/10.1016/j.bbabio.2012.12.010 CrossRefPubMedGoogle Scholar
  37. Roger AJ, Silberman JD (2002) Cell evolution: mitochondria in hiding. Nature 418:827–829CrossRefGoogle Scholar
  38. Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192.  https://doi.org/10.1016/j.cub.2017.09.015 CrossRefGoogle Scholar
  39. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274CrossRefGoogle Scholar
  40. Schofield PJ, Edwards MR, Matthews J, Wilson JR (1992) The pathway of arginine catabolism in Giardia intestinalis. Mol Biochem Parasitol 51:29–36CrossRefGoogle Scholar
  41. Slamovits CH, Keeling PJ (2006a) Pyruvate-phosphate dikinase of oxymonads and Parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell 5:148–154.  https://doi.org/10.1128/EC.5.1.148 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Slamovits CH, Keeling PJ (2006b) A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 6(34):34.  https://doi.org/10.1186/1471-2148-6-34 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stairs CW, Eme L, Brown MW et al (2014) A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 24:1176–1186.  https://doi.org/10.1016/j.cub.2014.04.033 CrossRefPubMedGoogle Scholar
  44. Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J, Smejkalová P, Šípek P, Čepička I, Hampl V (2018) Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist 169(5):744–783.  https://doi.org/10.1016/j.protis.2018.06.005 CrossRefPubMedGoogle Scholar
  45. Tsaousis AD, Ollagnier de Choudens S, Gentekaki E et al (2012) Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc Natl Acad Sci U S A 109:10426–10431.  https://doi.org/10.1073/pnas.1116067109 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Utami YD, Kuwahara H, Igai K et al (2018) Genome analyses of uncultured TG2/ZB3 bacteria in “Margulisbacteria” specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J 13:455.  https://doi.org/10.1038/s41396-018-0297-4 CrossRefPubMedGoogle Scholar
  47. Vacek V, Novák LVF, Treitli SC et al (2018) Fe-S cluster assembly in oxymonads and related protists. Mol Biol Evol.  https://doi.org/10.1093/molbev/msy168
  48. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869CrossRefGoogle Scholar
  49. Yarlett N, Martinez MP, Moharrami MA, Tachezy J (1996) The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78:117–125.  https://doi.org/10.1016/S0166-6851(96)02616-3 CrossRefPubMedGoogle Scholar
  50. Yutin N, Wolf MY, Wolf YI, Koonin EV (2009) The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9.  https://doi.org/10.1186/1745-6150-4-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zachar I, Szathmáry E (2017) Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol Direct 12:19.  https://doi.org/10.1186/s13062-017-0190-5 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang Q, Táborský P, Silberman JD et al (2015) Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known trimastigids (Paratrimastix n. Gen.). Protist 166:468–491.  https://doi.org/10.1016/j.protis.2015.07.003 CrossRefPubMedGoogle Scholar
  53. Zubáčová Z, Novák L, Bublíková J et al (2013) The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 8:e55417.  https://doi.org/10.1371/journal.pone.0055417 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of ParasitologyCharles University, BIOCEVVestecCzech Republic

Personalised recommendations