Advertisement

Mitochondrion-Related Organelles in Free-Living Protists

  • Michelle M. LegerEmail author
  • Martin Kolísko
  • Courtney W. Stairs
  • Alastair G. B. Simpson
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

Mitochondrion-related organelles (MROs) are organelles that have independently evolved from mitochondria in eukaryotes that live in low-oxygen conditions. These organelles are functionally diverse, possessing a range of ancestrally mitochondrial or horizontally acquired biochemical pathways. Early studies of MROs focused mainly on parasitic organisms; however, the past decade has seen a growing body of work on the MROs of free-living eukaryotes based on comparative genomics, making it possible to tease apart adaptations to low-oxygen conditions from adaptations to parasitism. Here, we review current knowledge of MROs in free-living eukaryotes.

Notes

Acknowledgments

We wish to thank Rachel Kolísko for helpful input and editing of the manuscript.

References

  1. Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279(16):16863–16874.  https://doi.org/10.1074/jbc.M313314200 CrossRefPubMedGoogle Scholar
  2. Barberà MJ, Ruiz-Trillo I, Tufts JY, Bery A, Silberman JD, Roger AJ (2010) Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell 9(12):1913–1924.  https://doi.org/10.1128/EC.00122-10 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AG, Roger AJ (2013) Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 280(1769):20131755.  https://doi.org/10.1098/rspb.2013.1755 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burki F, Corradi N, Sierra R, Pawlowski J, Meyer GR, Abbott CL, Keeling PJ (2013) Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in rhizaria. Curr Biol 23(16):1541–1547.  https://doi.org/10.1016/j.cub.2013.06.033 CrossRefPubMedGoogle Scholar
  5. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Burglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JS, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ (2013) Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 14(2):R11.  https://doi.org/10.1186/gb-2013-14-2-r11 CrossRefPubMedPubMedCentralGoogle Scholar
  6. de Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009) The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 9:287.  https://doi.org/10.1186/1471-2148-9-287 CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JW, van der Staay GW, Tielens AG, Huynen MA, Hackstein JH (2011) The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 28(8):2379–2391.  https://doi.org/10.1093/molbev/msr059 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KS, Artiguenave F, Jaillon O, Aury JM, Delbac F, Wincker P, Vivares CP, El Alaoui H (2011) Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 12(3):R29.  https://doi.org/10.1186/gb-2011-12-3-r29 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doležal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313(5785):314–318.  https://doi.org/10.1126/Science.1127895 CrossRefPubMedGoogle Scholar
  10. Doležal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, Sedinova M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T (2010) The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6(3):e1000812.  https://doi.org/10.1371/journal.ppat.1000812 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dudek J, Rehling P, van der Laan M (2013) Mitochondrial protein import: common principles and physiological networks. BBA-Mol Cell Res 1833(2):274–285.  https://doi.org/10.1016/j.bbamcr.2012.05.028 CrossRefGoogle Scholar
  12. Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431(7012):1103–1107.  https://doi.org/10.1038/nature02990 CrossRefPubMedGoogle Scholar
  13. Ebenezer TE, Carrington M, Lebert M, Kelly S, Field MC (2017) Euglena gracilis genome and transcriptome: organelles, nuclear genome assembly strategies and initial features. Adv Exp Med Biol 979:125–140.  https://doi.org/10.1007/978-3-319-54910-1_7 CrossRefPubMedGoogle Scholar
  14. Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26(3–4):201–215.  https://doi.org/10.1016/S0932-4739(11)80143-4 CrossRefGoogle Scholar
  15. Flegontov P, Michalek J, Janouškovec J, Lai DH, Jirku M, Hajduskova E, Tomcala A, Otto TD, Keeling PJ, Pain A, Oborník M, Lukeš J (2015) Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 32(5):1115–1131.  https://doi.org/10.1093/molbev/msv021 CrossRefPubMedGoogle Scholar
  16. Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642.  https://doi.org/10.1016/j.cell.2010.01.032 CrossRefPubMedGoogle Scholar
  17. Gabaldón T, Rainey D, Huynen MA (2005) Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 348(4):857–870.  https://doi.org/10.1016/j.jmb.2005.02.067 CrossRefPubMedGoogle Scholar
  18. Gawryluk RMR, Kamikawa R, Stairs CW, Silberman JD, Brown MW, Roger AJ (2016) The earliest stages of mitochondrial adaptation to low oxygen revealed in a novel rhizarian. Curr Biol 26(20):2729–2738.  https://doi.org/10.1016/j.cub.2016.08.025 CrossRefPubMedGoogle Scholar
  19. Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolísko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ (2017) Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 15(9):e2003769.  https://doi.org/10.1371/journal.pbio.2003769 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gill EE, Diaz-Trivino S, Barbera MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66(6):1306–1320.  https://doi.org/10.1111/j.1365-2958.2007.05979.x CrossRefPubMedGoogle Scholar
  21. Grant JR, Lahr DJG, Rey FE, Burleigh JG, Knight R, Molestina RE, Katz LA (2012) Gene discovery from a pilot study of the transcriptomes from three diverse microbial eukaryotes: Corallomyxa tenera, Chilodonella uncinata, and Subulatomonas tetraspora. Protist Genomics 1:3–18CrossRefGoogle Scholar
  22. Hackstein JHP (2010) Anaerobic ciliates and their methanogenic endosymbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea. Microbiology monographs. Springer, Heidelberg, pp 13–23CrossRefGoogle Scholar
  23. Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, Chen J, Milucka J, Viehweger B, Becker KW, Dong X, Stairs CW, Hinrichs KU, Brown MW, Roger AJ, Strous M (2016) Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature 534(7606):254–258.  https://doi.org/10.1038/nature18297 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hamann E, Tegetmeyer HE, Riedel D, Littmann S, Ahmerkamp S, Chen J, Hach PF, Strous M (2017) Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations. ISME J 11(5):1205–1217.  https://doi.org/10.1038/ismej.2016.197 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106(10):3859–3864.  https://doi.org/10.1073/pnas.0807880106 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hampson RK, Barron LL, Olson MS (1983) Regulation of the glycine cleavage system in isolated rat-liver mitochondria. J Biol Chem 258(5):2993–2999PubMedGoogle Scholar
  27. Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW (2005) The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 21(2):68–74.  https://doi.org/10.1016/j.pt.2004.11.010 CrossRefPubMedGoogle Scholar
  28. Hrdý I, Hirt RP, Doležal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432(7017):618–622.  https://doi.org/10.1038/nature03149 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27(2):311–324.  https://doi.org/10.1093/molbev/msp237 CrossRefPubMedGoogle Scholar
  30. Jedelský PL, Doležal P, Rada P, Pyrih J, Šmid O, Hrdý I, Sedinova M, Marcincikova M, Voleman L, Perry AJ, Beltran NC, Lithgow T, Tachezy J (2011) The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6(2):e17285.  https://doi.org/10.1371/journal.pone.0017285 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jerlström-Hultqvist J, Einarsson E, Xu FF, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svärd SG (2013) Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 4:2493.  https://doi.org/10.1038/ncomms3493 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Karnkowska A, Vacek V, Zubácová Z, Treitli SC, Petrzelkova R, Eme L, Novak L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudova M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček C, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26(10):1274–1284.  https://doi.org/10.1016/j.cub.2016.03.053 CrossRefPubMedGoogle Scholar
  33. Kikuchi G (1973) Glycine cleavage system - composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1(2):169–187.  https://doi.org/10.1007/bf01659328 CrossRefPubMedGoogle Scholar
  34. Kolísko M, Silberman J, Čepička I, Yubuki N, Takishita K, Yabuki A, Leander B, Inouye I, Inagaki Y, Roger A, Simpson A (2010) A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 12(10):2700–2710.  https://doi.org/10.1111/j.1462-2920.2010.02239.x CrossRefPubMedGoogle Scholar
  35. Kostka M (2017) Opalinata. In: Archibald JM, Slamovits CH, Simpson AGB (eds) Handbook of the protists. Springer, ChamGoogle Scholar
  36. Lantsman Y, Tan KS, Morada M, Yarlett N (2008) Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology 154(Pt 9):2757–2766.  https://doi.org/10.1099/mic.0.2008/017897-0 CrossRefGoogle Scholar
  37. Leger MM, Gawryluk RM, Gray MW, Roger AJ (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 8(9):e69532.  https://doi.org/10.1371/journal.pone.0069532 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Leger MM, Eme L, Hug LA, Roger AJ (2016) Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 33(9):2318–2336.  https://doi.org/10.1093/molbev/msw103 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leger MM, Kolísko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD, Andersson JO, Xu F, Yabuki A, Eme L, Zhang Q, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nature Ecol Evol 1(4):0092.  https://doi.org/10.1038/s41559-017-0092 CrossRefGoogle Scholar
  40. Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823(9):1491–1508.  https://doi.org/10.1016/j.bbamcr.2012.05.009 CrossRefPubMedGoogle Scholar
  41. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248(22):7724–7728Google Scholar
  42. Lindmark DG, Müller M, Shio H (1975) Hydrogenosomes in Trichomonas vaginalis. J Parasitol 61(3):552–554CrossRefGoogle Scholar
  43. Lonjers ZT, Dickson EL, Chu TP, Kreutz JE, Neacsu FA, Anders KR, Shepherd JN (2012) Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol 194(5):965–971.  https://doi.org/10.1128/JB.06319-11 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Maclean AE, Hertle AP, Ligas J, Bock R, Balk J, Meyer EH (2018) Absence of complex I is associated with diminished respiratory chain function in European mistletoe. Curr Biol 28(10):1614–1619 e1613.  https://doi.org/10.1016/j.cub.2018.03.036 CrossRefPubMedGoogle Scholar
  45. Maguire F, Richards TA (2014) Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr Biol 24(11):R518–R520.  https://doi.org/10.1016/j.cub.2014.03.075 CrossRefPubMedGoogle Scholar
  46. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19(3):2198–2205CrossRefGoogle Scholar
  47. Makiuchi T, Nozaki T (2014) Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 100:3–17.  https://doi.org/10.1016/j.biochi.2013.11.018 CrossRefGoogle Scholar
  48. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106(51):21731–21736.  https://doi.org/10.1073/pnas.0907106106 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T (2011) Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 5(8):e1263.  https://doi.org/10.1371/journal.pntd.0001263 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mi-ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T, Hara H, Nozaki T, Yoshida H (2015) Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci U S A 112(22):E2884–E2890.  https://doi.org/10.1073/pnas.1423718112 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mokranjac D, Neupert W (2010) The many faces of the mitochondrial TIM23 complex. BBA-Bioenergetics 1797(6–7):1045–1054.  https://doi.org/10.1016/j.bbabio.2010.01.026 CrossRefPubMedGoogle Scholar
  52. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu R-Y, van der Giezen M, Tielens AGM, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76(2):444–495.  https://doi.org/10.1128/mmbr.05024-11 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A, Hashimoto T, Inagaki Y, Fujikura K, Takishita K (2015) Metabolic capacity of mitochondrion-related organelles in the free-living anaerobic stramenopile Cantina marsupialis. Protist 166(5):534–550.  https://doi.org/10.1016/j.protis.2015.08.002 CrossRefPubMedGoogle Scholar
  54. Noguchi F, Tanifuji G, Brown MW, Fujikura K, Takishita K (2016) Complex evolution of two types of cardiolipin synthase in the eukaryotic lineage stramenopiles. Mol Phylogenet Evol 101:133–141.  https://doi.org/10.1016/j.ympev.2016.05.011 CrossRefPubMedGoogle Scholar
  55. Nývltová E, Šuták R, Harant K, Šedinová M, Hrdý I, Pačes J, Vlček C, Tachezy J (2013) NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 110(18):7371–7376.  https://doi.org/10.1073/pnas.1219590110 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nývltová E, Stairs CW, Hrdý I, Ridl J, Mach J, Pačes J, Roger AJ, Tachezy J (2015) Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 32(4):1039–1055.  https://doi.org/10.1093/molbev/msu408 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nývltová E, Smutna T, Tachezy J, Hrdý I (2016) OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of Trichomonas vaginalis. Mol Biochem Parasitol 206(1–2):29–38.  https://doi.org/10.1016/j.molbiopara.2016.01.006 CrossRefPubMedGoogle Scholar
  58. Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144.  https://doi.org/10.1146/annurev-micro-091014-104449 CrossRefPubMedGoogle Scholar
  59. Opperdoes FR, De Jonckheere JF, Tielens AG (2011) Naegleria gruberi metabolism. Int J Parasitol 41(9):915–924.  https://doi.org/10.1016/j.ijpara.2011.04.004 CrossRefPubMedGoogle Scholar
  60. Pánek T, Taborský P, Pachiadaki MG, Hroudová M, Vlček Č, Edgcomb VP, Čepička I (2015) Combined culture-based and culture-independent approaches provide insights into diversity of jakobids, an extremely plesiomorphic eukaryotic lineage. Front Microbiol 6:1288.  https://doi.org/10.3389/fmicb.2015.01288 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pánek T, Simpson AGB, Brown MW, Dyer BD (2017) Heterolobosea. In: Archibald JM, Slamovits CH, Simpson AGB (eds) Handbook of the Protists. SpringerGoogle Scholar
  62. Park J, Kolísko M, Heiss A, Simpson A (2009) Light microscopic observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n. G., n. Sp., a deep-branching relative of Diplomonads. J Eukaryot Microbiol 56(4):373–384.  https://doi.org/10.1111/j.1550-7408.2009.00412.x CrossRefPubMedGoogle Scholar
  63. Park J, Kolísko M, Simpson A (2010) Cell morphology and formal description of Ergobibamus cyprinoides n. G., n. Sp., another Carpediemonas-like relative of Diplomonads. J Eukaryot Microbiol 57(6):520–528.  https://doi.org/10.1111/j.1550-7408.2010.00506.x CrossRefPubMedGoogle Scholar
  64. Paul RG, Williams AG, Butler RD (1990) Hydrogenosomes in the rumen entodiniomorphid ciliate Polyplastron multivesiculatum. J Gen Microbiol 136(10):1981–1989.  https://doi.org/10.1099/00221287-136-10-1981 CrossRefGoogle Scholar
  65. Perez-Brocal V, Shahar-Golan R, Clark CG (2010) A linear molecule with two large inverted repeats: the mitochondrial genome of the stramenopile Proteromonas lacertae. Genome Biol Evol 2:257–266.  https://doi.org/10.1093/gbe/evq015 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Putz S, Doležal P, Gelius-Dietrich G, Boháčová L, Tachezy J, Henze K (2006) Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 5(3):579–586.  https://doi.org/10.1128/ec.5.3.579-586.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pyrihova E, Motyckova A, Voleman L, Wandyszewska N, Fiser R, Seydlova G, Roger A, Kolísko M, Doležal P (2018) A single Tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol 10:2813.  https://doi.org/10.1093/gbe/evy215 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27(21):R1177–R1192.  https://doi.org/10.1016/j.cub.2017.09.015 CrossRefGoogle Scholar
  69. Sanchez LB, Muller M (1996) Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett 378(3):240–244.  https://doi.org/10.1016/0014-5793(95)01463-2 CrossRefPubMedGoogle Scholar
  70. Santos HJ, Makiuchi T, Nozaki T (2018) Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol 34:1038.  https://doi.org/10.1016/j.pt.2018.08.008 CrossRefPubMedGoogle Scholar
  71. Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M, Neupert W (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371(6500):768–774.  https://doi.org/10.1038/371768a0 CrossRefPubMedGoogle Scholar
  72. Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ (2011) The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41(13–14):1421–1434.  https://doi.org/10.1016/j.ijpara.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191(13):4451–4457.  https://doi.org/10.1128/JB.01582-08 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Senkler J, Rugen N, Eubel H, Hegermann J, Braun HP (2018) Absence of complex I implicates rearrangement of the respiratory chain in European mistletoe. Curr Biol 28(10):1606–1613 e1604.  https://doi.org/10.1016/j.cub.2018.03.050 CrossRefPubMedGoogle Scholar
  75. Simpson AG, Patterson DJ (2001) On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J Eukaryot Microbiol 48(4):480–492CrossRefGoogle Scholar
  76. Šmid O, Matuskova A, Harris SR, Kucera T, Novotny M, Horvathova L, Hrdý I, Kutejova E, Hirt RP, Embley TM, Janata J, Tachezy J (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 4(12):e1000243.  https://doi.org/10.1371/journal.ppat.1000243 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stairs CW, Roger AJ, Hampl V (2011) Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol Biol Evol 28(7):2087–2099.  https://doi.org/10.1093/Molbev/Msr032 CrossRefPubMedGoogle Scholar
  78. Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ (2014) A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 24(11):1176–1186.  https://doi.org/10.1016/j.cub.2014.04.033 CrossRefPubMedGoogle Scholar
  79. Stairs CW, Leger MM, Roger AJ (2015) Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond Ser B Biol Sci 370(1678):20140326.  https://doi.org/10.1098/rstb.2014.0326 CrossRefGoogle Scholar
  80. Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ (2018) Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7.  https://doi.org/10.7554/eLife.34292
  81. Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18(8):580–585.  https://doi.org/10.1016/j.cub.2008.03.037 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Steinbuchel A, Muller M (1986) Anaerobic pyruvate metabolism of Tritrichomonas fetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20(1):57–65.  https://doi.org/10.1016/0166-6851(86)90142-8 CrossRefPubMedGoogle Scholar
  83. Takishita K, Kolísko M, Komatsuzaki H, Yabuki A, Inagaki Y, Čepička I, Smejkalova P, Silberman J, Hashimoto T, Roger A, Simpson A (2012) Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163(3):344–355.  https://doi.org/10.1016/j.protis.2011.12.007 CrossRefPubMedGoogle Scholar
  84. Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R, Inagaki Y, Hashimoto T (2018) The draft genome of Kipferlia bialata reveals reductive genome evolution in fornicate parasites. PLoS One 13(3):e0194487.  https://doi.org/10.1371/journal.pone.0194487 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tian HF, Feng JM, Wen JF (2012) The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC Evol Biol 12:32.  https://doi.org/10.1186/1471-2148-12-32 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40(4):387–397.  https://doi.org/10.1016/j.ijpara.2009.12.006 CrossRefGoogle Scholar
  87. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32(5):1013–1021CrossRefGoogle Scholar
  88. Tovar J, León-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963):172–176.  https://doi.org/10.1038/nature01945 CrossRefPubMedGoogle Scholar
  89. Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ (2011) A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 28(1):781–791.  https://doi.org/10.1093/molbev/msq252 CrossRefPubMedGoogle Scholar
  90. Tsaousis AD, Ollagnier de Choudens S, Gentekaki E, Long S, Gaston D, Stechmann A, Vinella D, Py B, Fontecave M, Barras F, Lukeš J, Roger AJ (2012) Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc Natl Acad Sci U S A 109(26):10426–10431.  https://doi.org/10.1073/pnas.1116067109 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vacek V, Novák LVF, Treitli SC, Táborský P, Čepička I, Kolísko M, Keeling PJ, Hampl V (2018) Fe-S cluster assembly in oxymonads and related protists. Mol Biol Evol 35(11):2712–2718.  https://doi.org/10.1093/molbev/msy168 CrossRefPubMedPubMedCentralGoogle Scholar
  92. van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136(2):89–95CrossRefGoogle Scholar
  93. Van Hellemond JJ, Klockiewicz M, Gaasenbeek CP, Roos MH, Tielens AG (1995) Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J Biol Chem 270(52):31065–31070CrossRefGoogle Scholar
  94. Xu F, Jerlstrom-Hultqvist J, Kolísko M, Simpson AGB, Roger AJ, Svard SG, Andersson JO (2016) On the reversibility of parasitism: adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. BMC Biol 14:62.  https://doi.org/10.1186/s12915-016-0284-z CrossRefPubMedPubMedCentralGoogle Scholar
  95. Yabuki A, Nakayama T, Yubuki N, Hashimoto T, Ishida K, Inagaki Y (2011) Tsukubamonas globosa n. Gen., n. Sp., a novel excavate flagellate possibly holding a key for the early evolution in "Discoba". J Eukaryot Microbiol 58(4):319–331.  https://doi.org/10.1111/j.1550-7408.2011.00552.x CrossRefPubMedGoogle Scholar
  96. Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoon Dasytricha ruminantium Schuberg. Biochem J 200(2):365–372CrossRefGoogle Scholar
  97. Yarlett N, Hann AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol B 74(2):357–364CrossRefGoogle Scholar
  98. Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21(1):15–19CrossRefGoogle Scholar
  99. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739CrossRefGoogle Scholar
  100. Yubuki N, Leander BS, Silberman JD (2010) Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. Et sp. nov. (Bicosoecida, incertae sedis). Protist 161(2):264–278.  https://doi.org/10.1016/j.protis.2009.10.004 CrossRefPubMedGoogle Scholar
  101. Yubuki N, Pánek T, Yabuki A, Čepička I, Takishita K, Inagaki Y, Leander BS (2015) Morphological identities of two different marine stramenopile environmental sequence clades: Bicosoeca kenaiensis (Hilliard, 1971) and Cantina marsupialis (Larsen and Patterson, 1990) gen. Nov., comb. nov. J Eukaryot Microbiol 62(4):532–542.  https://doi.org/10.1111/jeu.12207 CrossRefPubMedGoogle Scholar
  102. Yubuki N, Huang S, Leander B (2016) Comparative ultrastructure of fornicate excavates, including a novel free-living relative of diplomonads: Aduncisulcus paluster gen. Et sp nov. Protist 167(6):584–596.  https://doi.org/10.1016/j.protis.2016.10.001 CrossRefPubMedGoogle Scholar
  103. Zierdt CH (1991) Blastocystis hominis – past and future. Clin Microbiol Rev 4(1):61–79CrossRefGoogle Scholar
  104. Zierdt CH, Donnolley CT, Muller J, Constantopoulos G (1988) Biochemical and ultrastructural study of Blastocystis hominis. J Clin Microbiol 26(5):965–970PubMedPubMedCentralGoogle Scholar
  105. Zubácová Z, Novak L, Bublikova J, Vacek V, Fousek J, Ridl J, Tachezy J, Doležal P, Vlček C, Hampl V (2013) The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 8(3):e55417.  https://doi.org/10.1371/journal.pone.0055417 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michelle M. Leger
    • 1
    Email author
  • Martin Kolísko
    • 2
  • Courtney W. Stairs
    • 3
  • Alastair G. B. Simpson
    • 4
  1. 1.Institute of Evolutionary Biology (CSIC-UPF)BarcelonaSpain
  2. 2.Institute of Parasitology, Biology Centre, Czech Academy of ScienceČeské BudějoviceCzech Republic
  3. 3.Department of Cell and Molecular Biology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
  4. 4.Department of Biology, Centre for Comparative Genomics and Evolutionary BioinformaticsDalhousie UniversityHalifaxCanada

Personalised recommendations