Skip to main content

Deciphering the Role of PKC in Calpain-CAST System Through Formal Modeling Approach

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

Abstract

Calcium-activated calpain has critical role in a variety of calcium regulated processes. Calcium activates two other proteins, Calpastatin (CAST) and Protein Kinase C (PKC) to make a regulatory network which is pivotal in cell physiology. CAST binds with calpainĀ to form complex for hampering its hyperactivation. PKC phosphorylates CAST while calpain proteolyzes active PKC and increases calcium influx. Based on biological knowledge, a qualitative (discrete) model is constructed that provides new insights into the dynamics of calpain-CAST and PKC relationship. The model predicts that PKC maintains calpain-CAST complex by interacting with both active calpain and CAST. It is also observed that in physiological condition, there is a homeostatic behavior between calcium, CAST and PKC. Some significant discrete cycles are also identified by analyzing betweenness centralities of the discrete states. There is one stable state in the model in which calpain and calcium are hyperactivated while CAST and PKC are inactivated. The model is validated through the stochastic Petri Net model that further reveals its quantitative dynamical behaviors. Physiology is perturbed by hyperactivation of calpain which results in the deregulation of homeostasis. Both models suggest that inhibition of calpain by CAST is a better therapeutic strategy which requires healthy assistance from PKC. In conclusion, homeostasis of calcium, CAST and PKC is pivotal for a healthy state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira, A.: Calpain dysregulation in Alzheimer disease. ISRN Biochem. 2012, 12 (2012)

    Google ScholarĀ 

  2. Ryu, M., Nakazawa, T.: Calcium and calpain activation. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds.) Neuroprotection and Neuroregeneration for Retinal Diseases, pp. 13ā€“24. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54965-9_2

    ChapterĀ  Google ScholarĀ 

  3. Lokuta, M.A., Nuzzi, P.A., Huttenlocher, A.: Calpain regulates neutrophil chemotaxis. Proc. Natl. Acad. Sci. 100(7), 4006ā€“4011 (2003)

    ArticleĀ  Google ScholarĀ 

  4. Battaglia, F., Trinchese, F., Liu, S., Walter, S., Nixon, R.A., Arancio, O.: Calpain inhibitors, a treatment for Alzheimer disease. J. Mol. Neurosci. 20(3), 357ā€“362 (2003)

    ArticleĀ  Google ScholarĀ 

  5. Higuchi, M., et al.: Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. FASEB J. 26(3), 1204ā€“1217 (2012)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Letavernier, E., et al.: Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin ii-induced hypertension. Circ. Res. 102(6), 720ā€“728 (2008)

    ArticleĀ  Google ScholarĀ 

  7. Hanna, R.A., Campbell, R.L., Davies, P.L.: Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456(7220), 409ā€“412 (2008)

    ArticleĀ  Google ScholarĀ 

  8. Averna, M., De Tullio, R., Passalacqua, M., Salamino, F., Pontremoli, S., Melloni, E.: Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem. J. 354(1), 25ā€“30 (2001)

    ArticleĀ  Google ScholarĀ 

  9. Goll, D.E., Thompson, V.F., Li, H., Wei, W.E.I., Cong, J.: The calpain system. Physiol. Rev. 83(3), 731ā€“801 (2003)

    ArticleĀ  Google ScholarĀ 

  10. Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4(7), 517 (2003)

    ArticleĀ  Google ScholarĀ 

  11. Naldi, A., Berenguier, D., Faure, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97(2), 134ā€“139 (2009)

    ArticleĀ  Google ScholarĀ 

  12. Ahmad, J.: ModƩlisation hybride et analyse des dynamiques des rƩseaux de rƩgulations biologiques en tenant compte des dƩlais. Ph.D. thesis, Nantes (2009)

    Google ScholarĀ 

  13. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks-i. biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57(2), 247ā€“276 (1995)

    ArticleĀ  Google ScholarĀ 

  14. Comet, J.-P., Richard, A.: SMBioNet: a tool for modeling biological regulatory networks driven by temporal behavior. In: ECCB 2003, 27ā€“30 September 2003, Paris, France (2003)

    Google ScholarĀ 

  15. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. In: van Helden, J., Toussaint, A., Thieffry, D. (eds.) Bacterial Molecular Networks, vol. 804, pp. 463ā€“479. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-61779-361-5_23

    ChapterĀ  Google ScholarĀ 

  16. Ashraf, J., Ahmad, J., Ali, A., Ul-Haq, Z.: Analyzing the behavior of neuronal pathways in Alzheimerā€™s using petri net modeling approach. Front. Neuroinformatics 12, 26 (2018)

    ArticleĀ  Google ScholarĀ 

  17. Khalis, Z., Comet, J.-P., Richard, A., Bernot, G.: The SMBioNet method for discovering models of gene regulatory networks. Genes Genomes Genomics 3(1), 15ā€“22 (2009)

    Google ScholarĀ 

  18. Thibault, O., Gant, J.C., Landfield, P.W.: Expansion of the calcium hypothesis of brain aging and Alzheimerā€™s disease: minding the store. Aging Cell 6(3), 307ā€“317 (2007)

    ArticleĀ  Google ScholarĀ 

  19. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498ā€“2504 (2003)

    ArticleĀ  Google ScholarĀ 

  20. Tareen, S.H.K., Ahmad, J., Roux, O.: Parametric linear hybrid automata for complex environmental systems modeling. Front. Environ. Sci. 3, 47 (2015)

    ArticleĀ  Google ScholarĀ 

  21. Chaouiya, C., Remy, E., Thieffry, D.: Qualitative petri net modelling of genetic networks. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS, vol. 4220, pp. 95ā€“112. Springer, Heidelberg (2006). https://doi.org/10.1007/11880646_5

    ChapterĀ  Google ScholarĀ 

  22. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy ā€“ a unifying petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398ā€“407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_22

    ChapterĀ  Google ScholarĀ 

  23. Ye, T., et al.: Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling. PLoS One 10(3), e0120178 (2015)

    ArticleĀ  Google ScholarĀ 

  24. De Tullio, R., et al.: Differential regulation of the calpain-calpastatin complex by the l-domain of calpastatin. Biochimica et Biophysica Acta (BBA)-Mol. Cell Res. 1843(11), 2583ā€“2591 (2014)

    Google ScholarĀ 

  25. Blomgren, K., et al.: Calpastatin is up-regulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia-ischemia. J. Biol. Chem. 274(20), 14046ā€“14052 (1999)

    ArticleĀ  Google ScholarĀ 

  26. Rao, M.V., et al.: Marked calpastatin (cast) depletion in Alzheimerā€™s disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by cast overexpression. J. Neurosci. 28(47), 12241ā€“12254 (2008)

    ArticleĀ  Google ScholarĀ 

  27. Piper, H.M., Abdallah, Y., SchƤfer, C.: The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 61(3), 365ā€“371 (2004)

    ArticleĀ  Google ScholarĀ 

  28. Cressman, C.M., Mohan, P.S., Nixon, R.A., Shea, T.B.: Proteolysis of protein kinase C: mM and \(\mu \)M calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Lett. 367(3), 223ā€“227 (1995)

    Google ScholarĀ 

  29. Kang, M.-Y., Zhang, Y., Matkovich, S.J., Diwan, A., Chishti, A.H., Dorn, G.W.: Receptor-independent cardiac protein kinase C\(\alpha \) activation by calpain-mediated truncation of regulatory domains. Circ. Res. 107(7), 903ā€“912 (2010)

    Google ScholarĀ 

  30. Wang, Y., et al.: Targeting calpain for heart failure therapy: implications from multiple murine models. JACC: Basic Transl. Sci. 3(4), 503ā€“517 (2018)

    Google ScholarĀ 

  31. Noma, H., Kato, T., Fujita, H., Kitagawa, M., Yamano, T., Kitagawa, S.: Calpain inhibition induces activation of the distinct signalling pathways and cell migration in human monocytes. Immunology 141(2), 286ā€“286 (2014)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashraf, J., Ahmad, J., Ul-Haq, Z. (2019). Deciphering the Role of PKC in Calpain-CAST System Through Formal Modeling Approach. In: Rojas, I., Valenzuela, O., Rojas, F., OrtuƱo, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics