Skip to main content

Discovery of Novel Alpha-Amylase Inhibitors for Type II Diabetes Mellitus Through the Fragment-Based Drug Design

  • 1067 Accesses

Part of the Lecture Notes in Computer Science book series (LNBI,volume 11465)

Abstract

Diabetes mellitus is a metabolic disorder leading to hyperglycemia and organ damage. In 2017, the International Diabetes Federation (IDF) reported that about 425 million people living with diabetes, most of which suffer from type 2 diabetes mellitus. The drug development for controlling glucose level is crucial to treat people with type 2 diabetes mellitus. Alpha-amylase plays an imperative role in carbohydrate hydrolysis. Hence, the inhibition of alpha-amylase, which halt the glucose absorption, can be a promising pathway for developing type 2 diabetes mellitus drugs. Natural product has been known as the lead drugs for various diseases. In this research, the fragment merging drug design was performed by employing both the existing drug, voglibose, as the template and the natural product compounds to generate newly constructed ligands. The fragments were acquired from ZINC15 natural product database and then were screened according to Astex’s Rules of Three, pharmacophore properties, and molecular docking simulation. The 482 selected fragments were evaluated under Lipinski’s Rule of Five and toxicity effects using DataWarrior software. The ligands underwent molecular flexible docking simulation followed by the ADME-Tox prediction by using Toxtree, AdmetSAR, and SwissADME software. In the end, two lead compounds showed the best properties as an alpha-amylase inhibitor based on their low ΔGbinding, acceptable RMSD score, favorable pharmacological properties, and molecular interaction.

Keywords

  • Type 2 diabetes mellitus
  • Alpha-amylase
  • Fragment-based drug design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-17938-0_3
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-17938-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Hyun, T.K., Eom, S.H., Kim, J.: Molecular docking studies for discovery of plant-derived α-glucosidase inhibitors. Plant Omi. J. 7, 166–170 (2014)

    Google Scholar 

  2. Pontes, J.P.J., Mendes, F.F., Vasconcelos, M.M., Batista, N.R.: Evaluation and perioperative management of patients with diabetes mellitus. A challenge for the anesthesiologist. Rev. Bras. Anestesiol. 68, 75–86 (2018)

    CrossRef  Google Scholar 

  3. Zheng, Y., Ley, S.H., Hu, F.B.: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature 14, 88–98 (2018)

    Google Scholar 

  4. International Diabetes Federation: IDF Diabetes Atlas Eighth edition. Dipresentasikan pada (2017)

    Google Scholar 

  5. Kaku, K.: Pathophysiology of type 2 diabetes and its treatment policy. Jpn. Med. Assoc. J. 53, 41–46 (2010)

    Google Scholar 

  6. Sharifuddin, Y., Chin, Y.-X., Lim, P.-E., Phang, S.-M.: Potential bioactive compounds from seaweed for diabetes management. Mar. Drugs 13, 5447–5491 (2015)

    CrossRef  Google Scholar 

  7. Shankaraiah, P., Reddy, Y.N.: Alpha amylase expression in Indian type - 2 diabetic plants. J. Med. Sci. 11, 280–284 (2011)

    CrossRef  Google Scholar 

  8. Lahlou, M.: The success of natural products in drug discovery. Pharmacol. Pharm. 4, 17–31 (2013)

    CrossRef  Google Scholar 

  9. Kumar, A., Voet, A., Zhang, K.Y.J.: Fragment based drug design: from experimental to computational approaches. Curr. Med. Chem. 19, 1–19 (2012)

    CrossRef  Google Scholar 

  10. Setlur, A.S., Naik, S.Y., Skariyachan, S.: Herbal lead as ideal bioactive compounds against probable drug targets of Ebola virus in comparison with known chemical analogue: a computational drug discovery perspective. Interdiscip. Sci. Comput. Life Sci. 9, 254–277 (2017)

    CrossRef  Google Scholar 

  11. Scoffin, R., Slater, M.: Virtual elaboration of fragment ideas: growing, merging and linking fragments with realistic chemistry. Drug Discov. Dev. Deliv. 7, 36–40 (2015)

    Google Scholar 

  12. Erlanson, D.A., Mcdowell, R.S., Brien, T.O.: Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004)

    CrossRef  Google Scholar 

  13. Brayer, G.D., Luo, Y., Withers, S.G.: The structure of human pancreatic a-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 4, 1730–1742 (1995)

    CrossRef  Google Scholar 

  14. Bhasin, M., Raghava, G.P.S.: Computational methods in genome research. Appl. Mycol. Biotechnol. 6, 179–207 (2006)

    CrossRef  Google Scholar 

  15. Rydzewski, J., Jakubowski, R., Nowak, W.: Communication: entropic measure to prevent energy over-minimization in molecular dynamics simulations. J. Chem. Phys. 143 (2015)

    CrossRef  Google Scholar 

  16. Congreve, M., Carr, R., Murray, C., Jhoti, H.: Fragment-based lead discovery. Drug Discov. Today 8, 876–877 (2003)

    CrossRef  Google Scholar 

  17. Da, C., Kireev, D.: Structural protein − ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J. Chem. Inf. Model. 54, 2555–2561 (2014)

    CrossRef  Google Scholar 

  18. Hu, B., Lill, M.A.: Exploring the potential of protein-based pharmacophore models in ligand pose prediction and rangking. J. Chem. Inf. Model. 53, 1179–1190 (2014)

    CrossRef  Google Scholar 

  19. Zuccotto, F.: Pharmacophore features distributions in different classes of compounds. J. Chem. Inf. Comput. Sci. 43, 1542–1552 (2003)

    CrossRef  Google Scholar 

  20. Qing, X., et al.: Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J. Recept. Ligand Channel Res. 7, 81–92 (2014)

    Google Scholar 

  21. Machado, K.S., Schroeder, E.K., Ruiz, D.D., Cohen, E.M.L., Norberto de Souza, O.: FReDoWS: a method to automate molecular docking simulations with explicit receptor flexibility and snapshots selection. In: BMC Genomics, pp. 1–13 (2011)

    CrossRef  Google Scholar 

  22. Lipinski, C.A.: Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341 (2004)

    CrossRef  Google Scholar 

  23. Veber, D.F., Johnson, S.R., Cheng, H., Smith, B.R., Ward, K.W., Kopple, K.D.: Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Sci. 45, 2615–2623 (2002)

    Google Scholar 

  24. Daneman, R., Rescigno, M.: Review the gut immune barrier and the blood-brain barrier: are they so different? Immunity 31, 722–735 (2009)

    CrossRef  Google Scholar 

  25. Nasution, M.A.F., Toepak, E.P., Alkaff, A.H., Tambunan, U.S.F.: Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): a computational approach to discover new drug for combating Ebola. BMC Bioinform. 19, 137–176 (2018)

    CrossRef  Google Scholar 

  26. Badyal, D.K., Dadhich, A.P.: Cytochrome P450 and drug interactions. Indian J. Pharmacol. 33, 248–259 (2001)

    Google Scholar 

  27. Danker, T., Möller, C.: Early identification of hERG liability in drug discovery programs by automated patch clamp. Front. Pharmacol. 5, 1–11 (2014)

    CrossRef  Google Scholar 

  28. Hakura, A., Shimada, H., Nakajima, M., Sui, H., Kitamoto, S., Suzuki, S.: Salmonella/human S9 mutagenicity test: a collaborative study with 58 compounds. Mutagenesis 20, 217–228 (2005)

    CrossRef  Google Scholar 

  29. Hansen, K., et al.: Benchmark data set for in silico prediction of Ames mutagenicity. J. Chem. Inf. Model. 49, 2077–2081 (2009)

    CrossRef  Google Scholar 

  30. Walum, E.: Acute oral toxicity. Environ. Health Perspect. 106, 497–503 (1998)

    Google Scholar 

  31. Li, X., et al.: In silico prediction of chemical acute oral toxicity using multi-classification methods. Chem. Inf. Model. 54, 1061–1069 (2014)

    CrossRef  Google Scholar 

  32. Ertl, P., Schuffenhauer, A.: Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 11, 1–11 (2009)

    Google Scholar 

Download references

Acknowledgment

This research is financially supported by the Direktorat of Research and Community Engagement of Universitas Indonesia (DRPM UI) by Hibah Publikasi Internasional Terindeks 9 (PIT9) Project. Also, I would like to thank you to Mutiara Saragih and Ahmad Husein Alkaff for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Sumo Friend Tambunan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yulianti, Kantale, A.C.B., Tambunan, U.S.F. (2019). Discovery of Novel Alpha-Amylase Inhibitors for Type II Diabetes Mellitus Through the Fragment-Based Drug Design. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)