Skip to main content

Characteristics of Protein Fold Space Exhibits Close Dependence on Domain Usage

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11465))

  • 1064 Accesses

Abstract

With the growth of the PDB and simultaneous slowing of the discovery of new protein folds, we may be able to answer the question of how discrete protein fold space is. Studies by Skolnick et al. (PNAS, 106, 15690, 2009) have concluded that it is in fact continuous. In the present work we extend our initial observation (PNAS, 106(51) E137, 2009) that this conclusion depends upon the resolution with which structures are considered, making the determination of what resolution is most useful of importance. We utilize graph theoretical approaches to investigate the connectedness of the protein structure universe, showing that the modularity of protein domain architecture is of fundamental importance for future improvements in structure matching, impacting our understanding of protein domain evolution and modification. We show that state-of-the-art structure superimposition algorithms are unable to distinguish between conformational and topological variation. This work is not only important for our understanding of the discreteness of protein fold space, but informs the more critical question of what precisely should be spatially aligned in structure superimposition. The metric-dependence is also investigated leading to the conclusion that fold usage in homology reduced datasets is very similar to usage across all of PDB and should not be ignored in large scale studies of protein structure similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuff, A.L., et al.: Nucleic Acids Res. 37, D310–D314 (2009)

    Article  Google Scholar 

  2. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

  3. Finn, R.D., et al.: Nucleic Acids Res 36, D281–D288 (2008)

    Article  Google Scholar 

  4. Cuff, A.L., et al.: Nucleic Acids Res. 39, D420–D426 (2011)

    Article  Google Scholar 

  5. Zhang, Y., Hubner, I.A., Arakaki, A.K., Shakhnovich, E., Skolnick, J.: Proc. Natl. Acad. Sci. U.S.A. 103, 2605–2610 (2006)

    Article  Google Scholar 

  6. Grabowski, M., Joachimiak, A., Otwinowski, Z., Minor, W.: Curr. Opin. Struct. Biol. 17, 347–353 (2007)

    Article  Google Scholar 

  7. Skolnick, J., Arakaki, A.K., Lee, S.Y., Brylinski, M.: Proc. Natl. Acad. Sci. U.S.A. 106, 15690–15695 (2009)

    Article  Google Scholar 

  8. Zhang, Y., Skolnick, J.: Nucleic Acids Res. 33, 2302–2309 (2005)

    Article  Google Scholar 

  9. Berman, H.M., et al.: Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  10. Zimmermann, M., Towfic, F., Jernigan, R.L., Kloczkowski, A.: Proc. Natl. Acad. Sci. U. S. A 106, E137 (2009)

    Article  Google Scholar 

  11. Watts, D.J., Strogatz, S.H.: Nature 393, 440–442 (1998)

    Article  Google Scholar 

  12. Newman, M.E., Girvan, M.: Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  13. Van Dongen, S.: Technical Report INS-R0010. National Research Institute for Mathematics and Computer Science in the Netherlands (2000)

    Google Scholar 

  14. Van Dongen, S.: Ph.D. Thesis, Univ Utrecht, The Netherlands (2000)

    Google Scholar 

  15. Gibrat, J.F., Madej, T., Bryant, S.H.: Curr. Opin. Struct. Biol. 6, 377–385 (1996)

    Article  Google Scholar 

  16. Altschul, S.F., et al.: Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  17. Zhang, Y.: BMC Bioinf. 9, 40 (2008)

    Article  Google Scholar 

  18. de Leeuw, M., Reuveni, S., Klafter, J., Granek, R.: PLoS One 4, e7296 (2009)

    Article  Google Scholar 

  19. Reuveni, S., Granek, R., Klafter, J.: Proc. Natl. Acad. Sci. U.S.A. 107, 13696–13700 (2010)

    Article  Google Scholar 

  20. Lee, J., et al.: Science 322, 438–442 (2008)

    Article  Google Scholar 

  21. Guntas, G., Purbeck, C., Kuhlman, B.: Proc. Natl. Acad. Sci. U.S.A. 107, 19296–19301 (2010)

    Article  Google Scholar 

  22. Zhou, Y., Vitkup, D., Karplus, M.: J. Mol. Biol. 285, 1371–1375 (1999)

    Article  Google Scholar 

  23. Holm, L., Sander, C.: Nucleic Acids Res. 25, 231–234 (1997)

    Article  Google Scholar 

  24. Holm, L., Sander, C.: Nucleic Acids Res. 26, 316–319 (1998)

    Article  Google Scholar 

  25. Yoo, P.D., Sikder, A.R., Taheri, J., Zhou, B.B., Zomaya, A.Y.: IEEE Trans. Nanobiosci. 7, 172–181 (2008)

    Article  Google Scholar 

  26. Pandit, S.B., Skolnick, J.: BMC Bioinf. 9, 531 (2008)

    Article  Google Scholar 

  27. Ye, Y., Godzik, A.: Bioinformatics 19(Suppl 2), ii246–ii255 (2003)

    Article  Google Scholar 

  28. Horimoto, K., Toh, H.: Bioinformatics 17, 1143–1151 (2001)

    Article  Google Scholar 

  29. Satuluri, V., Parthasarathy, S., Ucar, D.: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, BCB 2010, pp. 247–256 (2010). https://dl.acm.org/citation.cfm?doid=1854776.1854812

  30. Viksna, J., Gilbert, D.: Bioinformatics 23, 832–841 (2007)

    Article  Google Scholar 

  31. Birzele, F., Csaba, G., Zimmer, R.: Nucleic Acids Res. 36, 550–558 (2008)

    Article  Google Scholar 

  32. Fong, J.H., Geer, L.Y., Panchenko, A.R., Bryant, S.H.: J. Mol. Biol. 366, 307–315 (2007)

    Article  Google Scholar 

  33. Meier, S., et al.: Curr. Biol. 17, 173–178 (2007)

    Article  Google Scholar 

  34. Gilbert, D., Westhead, D., Nagano, N., Thornton, J.: Bioinformatics 15, 317–326 (1999)

    Article  Google Scholar 

  35. Torrance, G.M., Gilbert, D.R., Michalopoulos, I., Westhead, D.W.: Bioinformatics 21, 2537–2538 (2005)

    Article  Google Scholar 

  36. Wang, G., Dunbrack Jr., R.L.: Bioinformatics 19, 1589–1591 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

AK and RLJ acknowledge support from the National Science Foundation (DBI 1661391) and from National Institutes of Health (R01GM127701 and R01GM127701-01S1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zimmermann, M.T., Towfic, F., Jernigan, R.L., Kloczkowski, A. (2019). Characteristics of Protein Fold Space Exhibits Close Dependence on Domain Usage. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11465. Springer, Cham. https://doi.org/10.1007/978-3-030-17938-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17938-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17937-3

  • Online ISBN: 978-3-030-17938-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics