Function vs. Taxonomy: The Case of Fungi Mitochondria ATP Synthase Genes
Conference paper
First Online:
- 1 Citations
- 691 Downloads
Abstract
We studied the relations between triplet composition of the family of mitochondrial atp6, atp8 and atp9 genes, their function, and taxonomy of the bearers. The points in 64-dimensional metric space corresponding to genes have been clustered. It was found the points are separated into three clusters corresponding to those genes. 223 mitochondrial genomes have been enrolled into the database.
Keywords
Order Clustering K-means Elastic map Stability EvolutionNotes
Acknowledgement
We are thankful to Reviewer whose remarks made the paper apparently better.
References
- 1.Molla, M., Delcher, A., Sunyaev, S., Cantor, C., Kasif, S.: Triplet repeat length bias and variation in the human transcriptome. Proc. Nat. Acad. Sci. 106(40), 17095–17100 (2009)CrossRefGoogle Scholar
- 2.Provata, A., Nicolis, C., Nicolis, G.: DNA viewed as an out-of-equilibrium structure. Phys. Rev. E 89, 052105 (2014)CrossRefGoogle Scholar
- 3.Qin, L., et al.: Survey and analysis of simple sequence repeats (SSRs) present in the genomes of plant viroids. FEBS Open Bio 4(1), 185–189 (2014)CrossRefGoogle Scholar
- 4.Moghaddasi, H., Khalifeh, K., Darooneh, A.H.: Distinguishing functional DNA words; a method for measuring clustering levels. Sci. Rep. 7, 41543 (2017)CrossRefGoogle Scholar
- 5.Bank, C., Hietpas, R.T., Jensen, J.D., Bolon, D.N.: A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32(1), 229–238 (2015)CrossRefGoogle Scholar
- 6.Albrecht-Buehler, G.: Fractal genome sequences. Gene 498(1), 20–27 (2012)CrossRefGoogle Scholar
- 7.Sadovsky, M., Putintseva, Y., Chernyshova, A., Fedotova, V.: Genome structure of organelles strongly relates to taxonomy of bearers. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 481–490. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_47CrossRefGoogle Scholar
- 8.Sadovsky, M., Putintseva, Y., Birukov, V., Novikova, S., Krutovsky, K.: De Novo assembly and cluster analysis of Siberian Larch transcriptome and genome. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 455–464. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31744-1_41CrossRefGoogle Scholar
- 9.Sadovsky, M., Putintseva, Y., Zajtseva, N.: System biology of mitochondrion genomes. In: Qian, P.Y., Nghiem, S.V. (eds.) The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, pp. 61–66, Venice/Mestre (2011)Google Scholar
- 10.Basse, C.W.: Mitochondrial inheritance in fungi. Curr. Opin. Microbiol. 13(6), 712–719 (2010)CrossRefGoogle Scholar
- 11.Gray, M.W., Burger, G., Lang, B.F.: Mitochondrial evolution. Science 283(5407), 1476–1481 (1999)CrossRefGoogle Scholar
- 12.Bullerwell, C.E., Lang, B.F.: Fungal evolution: the case of the vanishing mitochondrion. Curr. Opin. Microbiol. 8(4), 362–369 (2005)CrossRefGoogle Scholar
- 13.Esser, C., et al.: A genome phylogeny for mitochondria among \(\alpha \)-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21(9), 1643–1660 (2004)CrossRefGoogle Scholar
- 14.Davoodian, N., et al.: A global view of \(Gyroporus\): molecular phylogenetics, diversity patterns, and new species. Mycologia 110, 985–995 (2018)CrossRefGoogle Scholar
- 15.Nadimi, M., Daubois, L., Hijri, M.: Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol. Phylogenet. Evol. 98, 74–83 (2016)CrossRefGoogle Scholar
- 16.Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)zbMATHGoogle Scholar
- 17.Gorban, A.N., Zinovyev, A.Y.: Fast and user-friendly non-linear principal manifold learning by method of elastic maps. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19–21 October 2015, pp. 1–9 (2015)Google Scholar
- 18.Gorban, A.N., Zinovyev, A.: Principal manifolds and graphs in practice: from molecular biology to dynamical systems. Int. J. Neural Syst. 20(03), 219–232 (2010). PMID: 20556849CrossRefGoogle Scholar
- 19.Gorban, A.N., Zinovyev, A.Y.: Principal manifolds for data visualisation and dimension reduction. In: Gorban, A.N., Ke̋gl, B., Wünsch, D., Zinovyev, A.Y. (eds.) LNCSE, vol. 58, 2nd edn, pp. 153–176. Springer, Berlin, Heidelberg, New York (2007). https://doi.org/10.1007/978-3-540-73750-6CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019