Advertisement

Function vs. Taxonomy: The Case of Fungi Mitochondria ATP Synthase Genes

  • Michael SadovskyEmail author
  • Victory Fedotovskaya
  • Anna Kolesnikova
  • Tatiana Shpagina
  • Yulia Putintseva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11465)

Abstract

We studied the relations between triplet composition of the family of mitochondrial atp6, atp8 and atp9 genes, their function, and taxonomy of the bearers. The points in 64-dimensional metric space corresponding to genes have been clustered. It was found the points are separated into three clusters corresponding to those genes. 223 mitochondrial genomes have been enrolled into the database.

Keywords

Order Clustering K-means Elastic map Stability Evolution 

Notes

Acknowledgement

We are thankful to Reviewer whose remarks made the paper apparently better.

References

  1. 1.
    Molla, M., Delcher, A., Sunyaev, S., Cantor, C., Kasif, S.: Triplet repeat length bias and variation in the human transcriptome. Proc. Nat. Acad. Sci. 106(40), 17095–17100 (2009)CrossRefGoogle Scholar
  2. 2.
    Provata, A., Nicolis, C., Nicolis, G.: DNA viewed as an out-of-equilibrium structure. Phys. Rev. E 89, 052105 (2014)CrossRefGoogle Scholar
  3. 3.
    Qin, L., et al.: Survey and analysis of simple sequence repeats (SSRs) present in the genomes of plant viroids. FEBS Open Bio 4(1), 185–189 (2014)CrossRefGoogle Scholar
  4. 4.
    Moghaddasi, H., Khalifeh, K., Darooneh, A.H.: Distinguishing functional DNA words; a method for measuring clustering levels. Sci. Rep. 7, 41543 (2017)CrossRefGoogle Scholar
  5. 5.
    Bank, C., Hietpas, R.T., Jensen, J.D., Bolon, D.N.: A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32(1), 229–238 (2015)CrossRefGoogle Scholar
  6. 6.
    Albrecht-Buehler, G.: Fractal genome sequences. Gene 498(1), 20–27 (2012)CrossRefGoogle Scholar
  7. 7.
    Sadovsky, M., Putintseva, Y., Chernyshova, A., Fedotova, V.: Genome structure of organelles strongly relates to taxonomy of bearers. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 481–490. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16483-0_47CrossRefGoogle Scholar
  8. 8.
    Sadovsky, M., Putintseva, Y., Birukov, V., Novikova, S., Krutovsky, K.: De Novo assembly and cluster analysis of Siberian Larch transcriptome and genome. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 455–464. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31744-1_41CrossRefGoogle Scholar
  9. 9.
    Sadovsky, M., Putintseva, Y., Zajtseva, N.: System biology of mitochondrion genomes. In: Qian, P.Y., Nghiem, S.V. (eds.) The Third International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies, pp. 61–66, Venice/Mestre (2011)Google Scholar
  10. 10.
    Basse, C.W.: Mitochondrial inheritance in fungi. Curr. Opin. Microbiol. 13(6), 712–719 (2010)CrossRefGoogle Scholar
  11. 11.
    Gray, M.W., Burger, G., Lang, B.F.: Mitochondrial evolution. Science 283(5407), 1476–1481 (1999)CrossRefGoogle Scholar
  12. 12.
    Bullerwell, C.E., Lang, B.F.: Fungal evolution: the case of the vanishing mitochondrion. Curr. Opin. Microbiol. 8(4), 362–369 (2005)CrossRefGoogle Scholar
  13. 13.
    Esser, C., et al.: A genome phylogeny for mitochondria among \(\alpha \)-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol. 21(9), 1643–1660 (2004)CrossRefGoogle Scholar
  14. 14.
    Davoodian, N., et al.: A global view of \(Gyroporus\): molecular phylogenetics, diversity patterns, and new species. Mycologia 110, 985–995 (2018)CrossRefGoogle Scholar
  15. 15.
    Nadimi, M., Daubois, L., Hijri, M.: Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol. Phylogenet. Evol. 98, 74–83 (2016)CrossRefGoogle Scholar
  16. 16.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)zbMATHGoogle Scholar
  17. 17.
    Gorban, A.N., Zinovyev, A.Y.: Fast and user-friendly non-linear principal manifold learning by method of elastic maps. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19–21 October 2015, pp. 1–9 (2015)Google Scholar
  18. 18.
    Gorban, A.N., Zinovyev, A.: Principal manifolds and graphs in practice: from molecular biology to dynamical systems. Int. J. Neural Syst. 20(03), 219–232 (2010). PMID: 20556849CrossRefGoogle Scholar
  19. 19.
    Gorban, A.N., Zinovyev, A.Y.: Principal manifolds for data visualisation and dimension reduction. In: Gorban, A.N., Ke̋gl, B., Wünsch, D., Zinovyev, A.Y. (eds.) LNCSE, vol. 58, 2nd edn, pp. 153–176. Springer, Berlin, Heidelberg, New York (2007).  https://doi.org/10.1007/978-3-540-73750-6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Sadovsky
    • 1
    • 2
    Email author
  • Victory Fedotovskaya
    • 2
  • Anna Kolesnikova
    • 2
    • 3
  • Tatiana Shpagina
    • 2
  • Yulia Putintseva
    • 2
  1. 1.Institute of Computational Modelling of SB RASKrasnoyarskRussia
  2. 2.Institute of Fundamental Biology and BiotechnologySiberian Federal UniversityKrasnoyarskRussia
  3. 3.Laboratory of Genomics and BiotechnologyFederal Research Center RASKrasnoyarskRussia

Personalised recommendations