Advertisement

Non-generalized Analysis of the Multimodal Signals for Emotion Recognition: Preliminary Results

  • Edwin Londoño-Delgado
  • Miguel Alberto BecerraEmail author
  • Carolina M. Duque-Mejía
  • Juan Camilo Zapata
  • Cristian Mejía-Arboleda
  • Andrés Eduardo Castro-Ospina
  • Diego Hernán Peluffo-Ordóñez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11466)

Abstract

Emotions are mental states associated with some stimuli, and they have a relevant impact on the people living and are correlated with their physical and mental health. Different studies have been carried out focused on emotion identification considering that there is a universal fingerprint of the emotions. However, this is an open field yet, and some authors had refused such proposal which is contrasted with many results which can be considered as no conclusive despite some of them have achieved high results of performances for identifying some emotions. In this work an analysis of identification of emotions per individual based on physiological signals using the known MAHNOB-HCI-TAGGING database is carried out, considering that there is not a universal fingerprint based on the results achieved by a previous meta-analytic investigation of emotion categories. The methodology applied is depicted as follows: first the signals were filtered and normalized and decomposed in five bands (\(\delta \), \(\theta \), \(\alpha \), \(\beta \), \(\gamma \)), then a features extraction stage was carried out using multiple statistical measures calculated of results achieved after applied discrete wavelet transform, Cepstral coefficients, among others. A feature space dimensional reduction was applied using the selection algorithm relief F. Finally, the classification was carried out using support vector machine, and k-nearest neighbors and its performance analysis was measured using 10 folds cross-validation achieving high performance uppon to 99%.

Keywords

Emotion recognition Physiological signals Signal processing 

Notes

Acknowledgment

The authors acknowledge to the research project “Sistema multimodal multisensorial para detección de emociones y gustos a partir de señales fisiológicas no invasivas como herramienta multipropósito de soporte de decisión usando un dispositivo de registro de bajo costo” supported by Institución Universitaria Pascual Bravo and SDAS Research Group.

References

  1. 1.
    Ackermann, P., Kohlschein, C., Bitsch, J.Á., Wehrle, K., Jeschke, S.: EEG-based automatic emotion recognition: Feature extraction, selection and classification methods. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services, Healthcom 2016 (2016).  https://doi.org/10.1109/HealthCom.2016.7749447
  2. 2.
    Aguiñaga, A.R., Ramirez, M.A.L.: Emotional states recognition, implementing a low computational complexity strategy. Health Inform. J. 24(2), 146–170 (2018).  https://doi.org/10.1177/1460458216661862CrossRefGoogle Scholar
  3. 3.
    Melamed, A.F.: Las Teorías De Las Emociones Y Su Relación Con La Cognición: Un Análisis Desde La Filosofía De La Mente. Cuadernos de la Facultad de humanidades y Ciencias Sociales- universidad Nacional de Jujuy 49, 13–38 (2016). http://www.redalyc.org/pdf/185/18551075001.pdf
  4. 4.
    Almejrad, A.S.: Human emotions detection using brain wave signals: a challenging, 44, 640–659 (2010)Google Scholar
  5. 5.
    Deng, Z., Zhu, X., Cheng, D., Zong, M., Zhang, S.: Efficient KNN classification algorithm for big data. Neurocomputing 195, 143–148 (2016).  https://doi.org/10.1016/j.neucom.2015.08.112CrossRefGoogle Scholar
  6. 6.
    Gjoreski, M., Luštrek, M., Gams, M., Mitrevski, B.: An inter-domain study for arousal recognition from physiological signals. Informatica (Slovenia) 42(1), 61–68 (2018)Google Scholar
  7. 7.
    Haddadi, R., Abdelmounim, E.:  https://doi.org/10.1109/ICMCS.2014.6911261
  8. 8.
    Mejia, G., Gomez, A., Quintero, L.: Reconocimiento de Emociones utilizando la Tranformada Wavelet Estacionaria en señales EEG multicanal. In: IFMBEs Proceedings Claib 2016(October), pp. 1–4 (2016)Google Scholar
  9. 9.
    Milgram, J., Sabourin, R., Supérieure, É.D.T.: “One against one” or “one against all”: which one is better for handwriting recognition with SVMs? October 2006Google Scholar
  10. 10.
    Saini, I., Singh, D., Khosla, A.: QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J. Adv. Res. 4(4), 331–344 (2013).  https://doi.org/10.1016/j.jare.2012.05.007CrossRefGoogle Scholar
  11. 11.
    Salimi, A., Ziaii, M., Amiri, A., Hosseinjani, M., Karimpouli, S.: The Egyptian journal of remote sensing and space sciences using a feature subset selection method and support vector machine to address curse of dimensionality and redundancy in hyperion hyperspectral data classification. Egypt. J. Remote. Sens. Space Sci. 21(1), 27–36 (2018).  https://doi.org/10.1016/j.ejrs.2017.02.003CrossRefGoogle Scholar
  12. 12.
    Siegel, E.H., et al.: Emotion fingerprints or emotion populations? A meta-analytic investigation of autonomic features of emotion categories. Psychol. Bull. 144(4), 343–393 (2018).  https://doi.org/10.1037/bul0000128CrossRefGoogle Scholar
  13. 13.
    Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012).  https://doi.org/10.1109/T-AFFC.2011.25CrossRefGoogle Scholar
  14. 14.
    Tzanetakis, G., Essl, G., Cook, P.: 3 The Discrete Wavelet Transform, January 2001Google Scholar
  15. 15.
    Verma, G.K., Tiwary, U.S.: Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals. NeuroImage 102, 162–172 (2014).  https://doi.org/10.1016/j.neuroimage.2013.11.007CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Yang, X., Cheng, K.T.: Accurate face alignment and adaptive patch selection for heart rate estimation from videos under realistic scenarios. PLoS ONE 13(5), 12–15 (2018).  https://doi.org/10.1371/journal.pone.0197275CrossRefGoogle Scholar
  17. 17.
    Wiem, B.M.H., Lacharie, Z.: Emotion classification in arousal valence model using MAHNOB-HCI database. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 8(3), 318–323 (2017).  https://doi.org/10.14569/IJACSA.2017.080344. www.ijacsa.thesai.orgCrossRefGoogle Scholar
  18. 18.
    Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Programs Biomed. 140, 93–110 (2017).  https://doi.org/10.1016/j.cmpb.2016.12.005CrossRefGoogle Scholar
  19. 19.
    Zapata, J.C., Duque, C.M., Rojas-Idarraga, Y., Gonzalez, M.E., Guzmán, J.A., Becerra Botero, M.A.: Data fusion applied to biometric identification – a review. In: Solano, A., Ordoñez, H. (eds.) CCC 2017. CCIS, vol. 735, pp. 721–733. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66562-7_51CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Edwin Londoño-Delgado
    • 1
  • Miguel Alberto Becerra
    • 1
    Email author
  • Carolina M. Duque-Mejía
    • 1
  • Juan Camilo Zapata
    • 1
  • Cristian Mejía-Arboleda
    • 2
  • Andrés Eduardo Castro-Ospina
    • 2
  • Diego Hernán Peluffo-Ordóñez
    • 3
  1. 1.Institución Universitaria Pascual BravoMedellínColombia
  2. 2.Instituto Tecnológico MetropolitanoMedellínColombia
  3. 3.SDAS Research Group, Yachay TechUrcuquíEcuador

Personalised recommendations