Skip to main content

A Biomechanical Model Implementation for Upper-Limbs Rehabilitation Monitoring Using IMUs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11466))

Abstract

Rehabilitation is of great importance in helping patients to recover their autonomy after a stroke. It requires an assessment of the patient’s condition based on their movements. Inertial Measurement Units (IMUs) can be used to provide a quantitative measure of human movement for evaluation. In this work, three systems for articular angles determination are proposed, two of them based on IMUs and the last one on a vision system. We have evaluated the accuracy and performance of the proposals by analyzing the human arm movements. Finally, drift correction is assessed in long-term trials. Results show errors of \(3.43\%\) in the vision system and \(1.7\%\) for the IMU-based methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Béjot, Y., Bailly, H., Durier, J., Giroud, M.: Quarterly medical review epidemiology of stroke in Europe and trends for the 21st century. La Presse Medicale 45(12), e391–e398 (2016)

    Article  Google Scholar 

  2. Repnick, E., Puh, U., Goljar, N., Munih, M., Mihelj, M.: Using inertial measurement units and electromyography to qantify movement during action research arm test execution. Sensors 18(2767), 1–23 (2018)

    Google Scholar 

  3. Bai, L., Pepper, M.G., Yan, Y., Spurgeon, S.K.: Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 232–243 (2015)

    Article  Google Scholar 

  4. Huang, B., Giggins, O., Kechadi, T., Caulfield, B.: The limb movement analysis of rehabilitation exercises using wearable inertial sensors, pp. 4686–4689 (2016)

    Google Scholar 

  5. de Vries, W., Veeger, H., Cutti, A., Baten, C., van der Helm, F.: Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J. Biomech. 43, 1983–1988 (2010)

    Article  Google Scholar 

  6. Bötzel, K., Olivares, A., Cunha, J.P., Górriz Sáez, J.M., Weiss, R., Plate, A.: Quantification of gait parameters with inertial sensors and inverse kinematics. J. Biomech. 72, 207–214 (2018)

    Article  Google Scholar 

  7. Picerno, P.: 25 years of lower limb joint kinematics by using inertial and magnetic sensors : a review of methodological approaches. Gait Posture 51, 239–246 (2017)

    Article  Google Scholar 

  8. Olivares, A., Górriz, J.M., Ramírez, J., Olivares, G.: Using frequency analysis to improve the precision of human body posture algorithms based on Kalman filters. Comput. Biol. Med. 72, 229–238 (2016)

    Article  Google Scholar 

  9. Bennett, T., Jafari, R., Gans, N.: An extended Kalman filter to estimate human gait parameters and walking distance. In: 2013 American Control Conference, pp. 752–757 (2013)

    Google Scholar 

  10. Zihajehzadeh, S., Park, E.J.: A novel biomechanical model-aided IMU/UWB fusion for magnetometer-free lower body motion capture. IEEE Trans. Syst. Man Cybern.: Syst. 47, 1–12 (2016)

    Google Scholar 

  11. Leardini, A., Lullini, G., Giannini, S., Berti, L., Ortolani, M., Caravaggi, P.: Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis. J. Neuroeng. Rehabil. 11 (2014). https://doi.org/10.1186/1743-0003-11-136. Article No. 136

    Article  Google Scholar 

  12. Morrow, M.M.B., Lowndes, B., Fortune, E., Kaufman, K.R., Hallbeck, M.S.: Validation of inertial measurement units for upper body kinematics. J. Appl. Biomech. 33(3), 227–232 (2017). https://doi.org/10.1123/jab.2016-0120

    Article  Google Scholar 

  13. Seel, T., Schauer, T.: Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints. In: 2012 IEEE International Conference on Control Applications (CCA), pp. 0–4 (2012)

    Google Scholar 

  14. Kianifar, R., Lee, A., Raina, S., Kulic, D.: Automated assessment of dynamic knee valgus and risk of knee injury during the single leg squat. IEEE J. Transl. Eng. Health Med. 5(June), 1–13 (2017)

    Article  Google Scholar 

  15. Müller, P., Bégin, M.-A.S.T., Seel, T.: Alignment-free, self-calibrating elbow angles measurement using inertial sensors. IEEE J. Biomed. Health Inform. 21(2), 312–319 (2017)

    Article  Google Scholar 

  16. Lin, J.F., Kulić, D.: Human pose recovery using wireless inertial measurement units. Physiol. Meas. 33(12), 2099–2115 (2012)

    Article  Google Scholar 

  17. Uicker, J., Denavit, J., Hartenberg, R.: An iterative method for the displacement analysis of spatial mechanisms. J. Appl. Mech. 31(2), 309–314 (1964)

    Article  Google Scholar 

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Cox, I.J., Wilfong, G.T. (eds.) Autonomous Robot Vehicles, pp. 396–404. Springer, Heidelberg (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

    Chapter  Google Scholar 

  19. Norkin, C.C., White, D.J.: Measurement of Joint Motion: A Guide to Goniometry. FA Davis, Philadelphia (2016)

    Google Scholar 

  20. Jung, B., Sukhatme, G.S.: Detecting moving objects using a single camera on a mobile robot in an outdoor environment. In: International Conference on Intelligent Autonomous Systems, pp. 980–987 (2004)

    Google Scholar 

  21. MbientLab: Wearable Bluetooth 9-axis IMUs & environmental Sensors. https://mbientlab.com/

  22. Kinect para Windows v2. https://support.xbox.com/

  23. Cutti, A.G., Giovanardi, A., Rocchi, L., Davalli, A., Sacchetti, R.: Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 46(2), 169–178 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Junta de Comunidades de Castilla La Mancha (FrailCheck project SBPLY/17/180501/000392) and the Spanish Ministry of Economy and Competitiveness (TARSIUS project, TIN2015-71564-c4-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jesús García Domínguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García de Villa, S., Jimenéz Martín, A., García Domínguez, J.J. (2019). A Biomechanical Model Implementation for Upper-Limbs Rehabilitation Monitoring Using IMUs. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2019. Lecture Notes in Computer Science(), vol 11466. Springer, Cham. https://doi.org/10.1007/978-3-030-17935-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17935-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17934-2

  • Online ISBN: 978-3-030-17935-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics