Skip to main content

Formal Analysis of Robotic Cell Injection Systems Using Theorem Proving

Part of the Lecture Notes in Computer Science book series (LNISA,volume 11267)

Abstract

Cell injection is an approach used for the delivery of small sample substances into a biological cell and is widely used in drug development, gene injection, intracytoplasmic sperm injection (ICSI) and in-virto fertilization (IVF). Robotic cell injection systems provide the automation of the process as opposed to the manual and semi-automated cell injection systems, which require expert operators and involve time consuming processes and also have lower success rates. The automation of the cell injection process is achieved by controlling the injection force and planning the motion of the injection pipette. Traditionally, these systems are analyzed using paper-and-pencil proof and computer simulation methods. However, the former is human-error prone and the later is based on the numerical algorithms, where the approximation of the mathematical expressions introduces inaccuracies in the analysis. Formal methods can overcome these limitations and thus provide an accurate analysis of the cell injection systems. Model checking, i.e., a state-based formal method, has been recently proposed for the analysis of these systems. However, it involves the discretization of the differential equations that are used for modeling the dynamics of the system and thus compromises on the completeness of the analysis of these safety-critical systems. In this paper, we propose to use higher-order-logic theorem proving, a deductive-reasoning based formal method, for the modeling and analysis of the dynamical behaviour of the robotic cell injection systems. The proposed analysis, based on the HOL Light theorem prover, enabled us to identify some discrepancies in the simulation and model checking based analysis of the same robotic cell injection system.

Keywords

  • Robotic cell injection system
  • Higher-order logic
  • Theorem proving

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-17910-6_10
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-17910-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Formal Analysis of Robotic Cell Injection Systems using Theorem Proving (2018). http://save.seecs.nust.edu.pk/projects/farcistp/

  2. HOL Light Boolean Algebra (2018). https://github.com/jrh13/hol-light/blob/master/bool.ml

  3. HOL Light Multivariate Calculus (2018). https://github.com/jrh13/hol-light/blob/master/Multivariate

  4. HOL Light Real Arithmetic (2018). https://github.com/jrh13/hol-light/blob/master/real.ml

  5. HOL Light Real Calculus (2018). https://github.com/jrh13/hol-light/blob/master/Multivariate/realanalysis.ml

  6. HOL Light Vectors and Matrices (2018). https://github.com/jrh13/hol-light/blob/master/Multivariate/vectors.ml

  7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-6_1

    CrossRef  Google Scholar 

  9. Durán, A.J., Pérez, M., Varona, J.L.: The Misfortunes of a Mathematicians’ Trio using Computer Algebra Systems: Can We Trust? CoRR abs/1312.3270 (2013)

    Google Scholar 

  10. Faroque, M., Nizam, S.: Virtual Reality Training for Micro-robotic Cell Injection. Deakin University, Australia, Technical report (2016)

    Google Scholar 

  11. Harisson, J.: HOL Light Transcendental Theory (2018). https://github.com/jrh13/hol-light/blob/master/Multivariate/transcendentals.ml

  12. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814

    CrossRef  Google Scholar 

  13. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, New York (2009)

    CrossRef  Google Scholar 

  14. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reasoning 50(2), 173–190 (2013)

    MathSciNet  CrossRef  Google Scholar 

  15. Harrison, J., et al.: Formalized Mathematics. Turku Centre for Computer Science, Turku (1996)

    Google Scholar 

  16. Hasan, O., Tahar, S.: Formal Verification Methods. Encyclopedia of Information Science and Technology, pp. 7162–7170. IGI Global Pub. (2015)

    Google Scholar 

  17. Huang, H., Sun, D., Mills, J.K., Li, W.J.: A visual impedance force control of a robotic cell injection system. In: Robotics and Biomimetics, pp. 233–238. IEEE (2006)

    Google Scholar 

  18. Huang, H., Sun, D., Mills, J.K., Li, W.J., Cheng, S.H.: Visual-based impedance control of out-of-plane cell injection systems. Trans. Autom. Sci. Eng. 6(3), 565–571 (2009)

    CrossRef  Google Scholar 

  19. Kuncova, J., Kallio, P.: Challenges in capillary pressure microinjection. In: Engineering in Medicine and Biology Society, vol. 2, pp. 4998–5001. IEEE (2004)

    Google Scholar 

  20. Mathematica (2017). https://www.wolfram.com/mathematica/

  21. Nakayama, T., Fujiwara, H., Tastumi, K., Fujita, K., Higuchi, T., Mori, T.: A new assisted hatching technique using a piezo-micromanipulator. Fertil. Steril. 69(4), 784–788 (1998)

    CrossRef  Google Scholar 

  22. Nethery, J.F., Spong, M.W.: Robotica: a mathematica package for robot analysis. IEEE Robot. Autom. Mag. 1(1), 13–20 (1994)

    CrossRef  Google Scholar 

  23. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press, Cambridge (1996)

    CrossRef  Google Scholar 

  24. Sardar, M.U., Hasan, O.: Towards probabilistic formal modeling of robotic cell injection systems. In: Models for Formal Analysis of Real Systems, pp. 271–282 (2017)

    CrossRef  Google Scholar 

  25. Sun, D., Liu, Y.: Modeling and impedance control of a two-manipulator system handling a flexible beam. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1787–1792. IEEE (1997)

    Google Scholar 

  26. Sun, Y., Nelson, B.J.: Biological cell injection using an autonomous microrobotic system. Robot. Res. 21(10–11), 861–868 (2002)

    CrossRef  Google Scholar 

  27. Yanagida, K., Katayose, H., Yazawa, H., Kimura, Y., Konnai, K., Sato, A.: The usefulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans. Hum. Reprod. 14(2), 448–453 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rashid, A., Hasan, O. (2019). Formal Analysis of Robotic Cell Injection Systems Using Theorem Proving. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2017. Lecture Notes in Computer Science(), vol 11267. Springer, Cham. https://doi.org/10.1007/978-3-030-17910-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17910-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17909-0

  • Online ISBN: 978-3-030-17910-6

  • eBook Packages: Computer ScienceComputer Science (R0)