Skip to main content

The Battle for a Sustainable Food Supply

  • Chapter
  • First Online:
Sustainable Agrochemistry

Abstract

Since the time that Homo sapiens took up farming, a battle has been waged against pests and diseases which can cause significant losses in crop yield and threaten a sustainable food supply. Initially, early control techniques included religious practices or folk magic, hand removal of weeds and insects, and “chemical” techniques such as smokes, easily available minerals, oils and plant extracts known to have pesticidal activity. But it was not until the early twentieth century that real progress was made when a large number of compounds became available for testing as pesticides due to the upsurge in organic chemistry. The period after the 1940s saw the introduction of important families of chemicals, such as the phenoxy acid herbicides, the organochlorine insecticides and the dithiocarbamate fungicides. The introduction of new pesticides led to significant yield increases, but concern arose over their possible negative effects on human health and the environment. In time, resistance started to occur, making these pesticides less effective. This led agrochemical companies putting in place research looking for new modes of action and giving less toxic and more environmentally friendly products. These research programmes gave rise to new pesticide families, such as the sulfonylurea herbicides, the strobilurin fungicides and the neonicotinoid insecticide classes.

This work formed part of a project (Project No. 2012-019-1-600) supported by the International Union of Pure and Applied Chemistry (IUPAC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilladelis B, Schwarzkopf A, Cines M (1987) A study of inoovation in the pesticide industry: analysis of the innovation record of an industrial sector. Res Policy 16(2–4):175–212

    Google Scholar 

  • Achilladelis B, Schwarzkopf A, Cines M (2013) A study of innovation in the pesticide industry: analysis of the innovation record of an industrial sector. In: Freeman C (ed) Output measurement in science and technology: essays in honour of Yvan Fabian. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Ackerman F (2007) The economics of atrazine. J Occup Environ Health 13:441–449

    Google Scholar 

  • Adcock TE, Banks PA (1991) Effects of pre-emergence herbicides on the competitiveness of selected weeds. Weed Sci 39:54–56

    CAS  Google Scholar 

  • Adler EF, Wright WL, Klingman GC (1977) Development of the American herbicide industry. ACS symposium series—pesticide chemistry in the 20th Century (Chap. 3), vol 37, pp 39–55

    Google Scholar 

  • Agropages (2015) Pests generated losses of US$ 250 billion in the World, Agronews, 13 Jan

    Google Scholar 

  • Alyokhim A, Baker M, Monta-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413

    Google Scholar 

  • Andes JO, Epps JM (1956) Evaluation of fungicides for control of fruit diseases. Ag. Expt. Station, University of Tennessee, Bulletin No. 254

    Google Scholar 

  • APS (2019) American Phytopathological Society, APS History, Forming the American Phytopathological Society. http://www.apsnet.org/about/history/Pages/default.aspx

  • Armelagos GT, Goodman AH, Jacobs KH (1991) The origins of agriculture: population growth during a period of declining health. Popul Environ 13:9–22

    Google Scholar 

  • Attard E, Cuschieri A (2009) Cytotoxicity of Cucurbitacin E extracted from Ecballium elaterium in vitro. J Nat Remedies 4:137–144

    Google Scholar 

  • Back RC (1965) Carbamate insecticides: significant developments in eight years with Sevin insecticide. J Agric Food Chem 13:198–199

    CAS  Google Scholar 

  • Bais HP, Walker TS, Kennan AJ, Stermitz FR, Vivanco JM (2003) Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. J Agric Food Chem 51:897–901

    CAS  PubMed  Google Scholar 

  • Baker H (1952) Spider mites, insects and DDT. The yearbook of agriculture, USDA, Washington DC, USA, pp 562–567

    Google Scholar 

  • Baker MJ (2008) A structural model of the transition to agriculture. J Econ Growth 13:257–292

    Google Scholar 

  • Baldwin RFW (2005) Public perceptions of urban pest management and the toxicity of fatty acid salts to cockroaches. A dissertation presented to the Graduate School of the University of Florida in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy, University of Florida

    Google Scholar 

  • Ball WE, French OC (1935) Sulfuric acid for control of weeds. University of California, College of Agriculture, Bulletin 596

    Google Scholar 

  • Barss HP, Andre F (1945) Reducing Losses from Diseases and Pests, Report on Experiment Stations 1944, USDA, Agricultural Research Administration, Washington DC, USA

    Google Scholar 

  • Bayer Seed Growth (2014) 100 years of innovation in seed treatment. Bayer CropScience, Monheim am Rhein, Germany. http://www.seedgrowth.bayer.com/~/media/SeedGrowth/Bayer100YearsFlash/index.ashx?iframe=true&width=995&height=700

  • Bedford CW, Winkelman HA (1923) Systematic survey of rubber chemistry. The Chemical Catalog Company Inc., New York

    Google Scholar 

  • Beinhart EG (1951) Production and use of nicotine, United States Department of Agriculture, Crops in Peace and War, The Yearbook of Agriculture 1950–1951, pp 773–779

    Google Scholar 

  • Bellwood P, Oxenham M (2008) The expansion of farming societies and the role of the neolithic demographic transition. In: Bocquet-Appel J-P, Bar-Yosef O (eds) The neolithic demographic transition and its Consequences. Springer Science + Business Media B.V., The Netherlands. ISBN 978-1-4020-8538-3

    Google Scholar 

  • Bender B (1978) Gatherer-hunter to farmer: a social perspective. World Archaeol 10:204–222

    Google Scholar 

  • Bermúdez-Torres K, Herrera JM, Brito RF, Wink M, Legal L (2009) Activity of quinolizidine alkaloids from three Mexican Lupinus against the lepidopteran crop pest Spodoptera frugiperda. Biocontrol 54:459–466

    Google Scholar 

  • Bettinger R, Richerson P, Boyd R (2009) Constraints on the development of agriculture. Curr Anthropol 50:627–631

    PubMed  Google Scholar 

  • Bettiol W (1999) Effectiveness of cow’s milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions. Crop Prot 18:489–492

    Google Scholar 

  • Beyl CA (1992) Rachel carson, silent spring and the environmental movement. HortTechnology 2:272–275

    Google Scholar 

  • Biswas K, Chattopadhay L, Banerjee RK, Bandyopadhay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345

    CAS  Google Scholar 

  • Boote KJ, Jones JW, Mishoe JW, Berger RD (1983) Coupling growth simulators to predict yield reductions. Phytopathology 73:1581–1587

    Google Scholar 

  • Borden AE (1947) Control of coddling moth with DDT spray on apples and pears: good in investigational work. Calif Agric 1:3–4

    Google Scholar 

  • Boschin G, Annicchiarico P, Resta D, d’Agstina Arnold A (2008) Quinolizidine alkaloids in seeds of lupin genotypes of different origins. J Agric Food Chem 56:3657–3663

    CAS  PubMed  Google Scholar 

  • Bourcart E (1913) Insecticides, fungicides and weed killers: a practical manual on the diseases of plants and their remedies, for the use of manufacturing chemists, agriculturalists, arboriculturalists and horticulturalists. Translated from the French by Grant D, Scott, Greenwood and Son, London, UK

    Google Scholar 

  • Brandes GA (1953) The history and development of the ethylene bisdithiocarbamate fungicides. Am J Potato Res 30:137–140

    CAS  Google Scholar 

  • Braseley P (2000) Weed and pest control. In: Collins EJT and Thirsk J (eds) The agrarian history of England and Wales, vol VII, 1850–1914. Cambridge University Press, Cambridge. ISBN 0521 32926 4

    Google Scholar 

  • Brent KJ (2003) Fungicides, an overview. In: Plimmer JR, Gammon DW, Ragsdale NA (eds) Encyclopedia of agrochemicals. Wiley Online Library. Online ISBN 9780471263630

    Google Scholar 

  • Bromilow RH (2003) Paraquat and sustainable agriculture. Pest Manag Sci 60:340–349

    Google Scholar 

  • Brooks GT (1977) Chlorinated insecticides: retrospect and prospect, pesticide chemistry in the 20th Century. In: Plimmer JR (ed) ACS Symposium Series No. 37. ACS, Washington DC, USA, pp 1–20

    Google Scholar 

  • Brown JG, Streets RB (1928) Sulphuric acid spray: a practical means for the control of weeds. University of Arizona, College of Agriculture, Bulletin No. 128

    Google Scholar 

  • Bucha HC, Todd CW (1951) 3-(p-Chlorophenyl)-1,1-Dimethylurea—a new herbicide. Science 114:493–494

    CAS  PubMed  Google Scholar 

  • Bulger JW (1928) Studies on elemental sulfur as a soil insecticide. Ohio J Sci 28:1–42

    CAS  Google Scholar 

  • Bunsupa S, Yamasaki M, Saito K (2012) Quinolizidine Alkaloid Biosynthesis: Recent Advances and Future Prospects. Front Plant Sci 3:1–7

    Google Scholar 

  • Burnside OC (1996) Biologic and economic assessment of benefits from use of phenoxy herbicides in the United States. Special NAPIAP Report, No. 1-PA-96, Washington D.C., USA

    Google Scholar 

  • Buttress FA, Dennis RWG (1947) The early history of cereal seed treatment in England. Agric Hist 21:93–103

    Google Scholar 

  • Carson R (2002) Silent spring. 40th Anniversary Edition, Houghton Mifflin Harcourt, New York, USA. ISBN 0618249060

    Google Scholar 

  • Case HCM, Mosher ML (1932) Farm practices that pay. University of Illinois, College of Agriculture and Agricultural Experiment Station, Circular 389

    Google Scholar 

  • Casida JE, Quistad GB (1998) Golden age of insecticide research: past, present or future. Annu Rev Entomol 43:1–16

    CAS  PubMed  Google Scholar 

  • Cates HR (1917) The weed problem in American agriculture. Yearbook of the Dept. Agriculture, USDA, pp 205–216

    Google Scholar 

  • Chow PNP (1976) Dinitroaniline herbicides for grassy weed control in rapeseed. Can J Plant Sci 56:705–713

    CAS  Google Scholar 

  • Cisneros J (1970) Estudio Sobre el Incremento de la Produccion de la Cana de Azucar en el Ingenio de Los Mochis, Mediante el Uso de Herbicidas (A study on yield increase of sugar cane using herbicides at Los Mochis estate). Bol Azucar Mex 246:12–19

    Google Scholar 

  • Clark G (1991) Yields per acre in English agriculture, 1250–1860: evidence from labour inputs. Econ Hist Rev New Ser 44:445–460

    Google Scholar 

  • Cloyd RA (2013) Lime-sulfur: a broad-spectrum pesticide. Garden & Greenhouse, April

    Google Scholar 

  • Cohen MN, Crane-Kramer G (2007) Ancient health: skeletal indicators of agricultural and economic intensification. University Press of Florida, Gainesville. ISBN 978-0-8130-3082-1

    Google Scholar 

  • Cole D, Pallett K, Rodgers M (2000) Discovering new modes of action for herbicides and the impact of genomics. Pest Outlook 11:223–229

    CAS  Google Scholar 

  • Collins WB, Everett CF (1965) Simazine for weed control in strawberries in Eastern Canada. Can J Plant Sci 45:541–547

    Google Scholar 

  • Copper Development Association Inc. (2019) Uses of copper: agricultural uses. http://www.copper.org/resources/properties/compounds/agricultural.html

  • Cornell University (1985) Pesticide management education program. Chemical Profile 2/85, Dichlone (Phygon, Quintar)

    Google Scholar 

  • Cornell University (1986) Pesticide management education program. Chemical Fact Sheet 3/86, Captan

    Google Scholar 

  • Crosby DG (1995) Environmental fate of pyrethrins. In: Casida JE, Quistad GB (eds) Pyrethrum flowers: production, chemistry, toxicology and uses. Oxford University Press, New York, pp 177–178. ISBN 10:0195082109

    Google Scholar 

  • Cudney DE (1996) Why herbicides are selective, California Exotic Pest Council, Symposium Proceedings, San Diego, California, USA. http://www.cal-ipc.org/symposia/archive/pdf/1996_symposium_proceedings1827.pdf

  • De Groot I (2004) Protection of stored grains and pulses, Agrodok 18, p 27, Agromisa Foundation, Wageningen, The Netherlands. ISBN 90-77073-49-3

    Google Scholar 

  • de Saulieu G, Testart A (2015) Innovation, food storage and the origin of agriculture. Environ Archaeol 20:314–320

    Google Scholar 

  • Deng Z, Qin L, Gao Y, Weisskopf AR, Fuller DQ (2015) From early domesticated rice of the middle Yangtze Basin to millet, rice and wheat agriculture: Archaeobotanical macro-remains from Baligang, Nanyang Basin, Central China (6700–500 BC). PLoS 10(10):e0139885

    PubMed  PubMed Central  Google Scholar 

  • Derr JF (2001) Biological assessment of herbicide use in apple production 1. Background and current use estimates. HortTechnology 11:1–19

    Google Scholar 

  • Diener UL, Eden G, Carlton CC (1955) Control of leaf spot and strawberry weevil on trailing blackberries. Ag. Expt. Station, Alabama Polytechnic Institute, Leaflet No. 46

    Google Scholar 

  • Dow GK, Olewiler N, Reed C (2005) The transition to agriculture: climate reversals, population density and technical change. SSRN Electron J. https://doi.org/10.2139/ssrn.698342

  • Duke SO, Cantrell CL, Meepagala KM, Wedge DE, Tabanca N, Schrader KK (2010) Natural toxins in pest management. Toxins (Basel) 2:1943–1962

    CAS  Google Scholar 

  • DuPont Digest (1948) Rubber accelerators lead the way to new agricultural fungicides. The Michigan Technic, Jan 1948

    Google Scholar 

  • Ebeling W, Pence R J (1947) The mealy bug problem on newly top-grafted avocado trees. California Avocado Society, Yearbook 32, pp 44–45

    Google Scholar 

  • Eddins AH (1947) New fungicides. Proc Florida State Hort Soc 60:124–127

    Google Scholar 

  • Egli T, Sturm E (1981) Bacterial diseases and their control, 6.2.1 Chemistry of bactericidal compounds. In: Wegler R (ed) Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel. Springer, Berlin

    Google Scholar 

  • Eleftherohorinos IG, Dhima KV (2002) Red rice (Oryza sativa) control in rice (O. sativa) with preemergence and postemergence herbicides. Weed Technol 16:537–540

    CAS  Google Scholar 

  • Emsley J (1985) Whatever happened to arsenic? New Scientist, 19–26 Dec. http://johnemsley.com/articles/new_scientist/ns_arsenic.html

  • Essig EO (1946) Investigations with DDT and other new insecticides in 1945, Circular 365, University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, California, USA

    Google Scholar 

  • Evans WH (1896) Copper sulphate and germination: Treatment of seed with copper sulphate to prevent the attacks by Fungi. USDA, Dept. of Vegetable Physiology and Pathology, Bulletin No. 10

    Google Scholar 

  • Evans LT (1980) The natural history of crop yield. Am Sci 68:388–397

    Google Scholar 

  • Ewart WH (1948) Citrus thrips control with DDT: investigated in two Coachella Valley groves. Calif Agric 2:11–16

    Google Scholar 

  • EXTOXNET (1996a) Pesticide information profiles, Captan

    Google Scholar 

  • EXTOXNET (1996b) Pesticide information profiles, Lindane

    Google Scholar 

  • EXTOXNET (1996c) Pesticide information profiles, Aldicarb

    Google Scholar 

  • Fahad S, Nie L, Rahman A, Chen C, Wu C, Saud S, Huang J (2013) Comparative efficacy of different herbicides for weed management and yield attributes in wheat. Am J Plant Sci 4:1241–1245

    Google Scholar 

  • Fahad S, Hussain S, Chauhan BS, Saud S, Wu C, Hassan S, Tanveer M, Jan A, Huang J (2015) Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Prot 71:101–108

    Google Scholar 

  • FAO (1967) JMPR—evaluation of some pesticide residues in food. DDT

    Google Scholar 

  • FAO (1968) JMPR—evaluations of some pesticide residues in food. Dieldrin

    Google Scholar 

  • FAO (1971) JMPR—evaluations of some pesticide residues in food. Endrin

    Google Scholar 

  • FAO (2018) The state of food security and nutrition in the world 2018; Building Climate Resilience for Food Security and Nutrition Food and Agriculture Organisation of the United Nations, Rome, Italy

    Google Scholar 

  • Fay IW (1919) The chemistry of the coal tar dyes. Pub. D. Van Nostrand Company, New York, USA

    Google Scholar 

  • Ferguson C (1992) Bayer crop protection—the first 100 years 1892–1992. Pestic Outlook 3:32–34

    Google Scholar 

  • Fisher DF (1921) Control of apple powdery mildew. Farmers’ Bulletin No. 1120, USDA, Washington D.C., USA

    Google Scholar 

  • Freed VH (1980) Weed science: the emergence of a vital technology. Weed Sci 28:621–625

    Google Scholar 

  • Friesen HA, Bowen KE (1973) Factors affecting the control of wild oats in rapeseed with trifluralin. Can J Plant Sci 53:109–205

    Google Scholar 

  • Fuerst EP (1987) Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol 1:270–277

    CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphate and carbamate insecticides. Environ Health Perspect 87:245–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusetto R, O’Hair RAJ (2015) Nicotine as an insecticide in Australia: a short history. Chemistry in Australia, 18–21 Oct

    Google Scholar 

  • Ganzel W (2007) Farming in the 1950s & 60s, silent spring & the environmental movement. Wessels Living History Farm, York, Nebraska, USA

    Google Scholar 

  • Gasquez J (2015) Désherbant, Herbicide: Un Peu d’Histoire, Les Mots de l’Agronomie, 1 Apr, INRA, Paris, France. http://mots-agronomie.inra.fr/mots-agronomie.fr/index.php/D%C3%A9sherbant,_herbicide_:_un_peu_d%27histoire

  • Gianessi LP (1997) The uses and benefits of organophosphate and carbamate insecticides in U.S. crop production. National Center for Food and Agricultural Policy, Washington DC, USA

    Google Scholar 

  • Gianessi LP (2009) The value of insecticides in U.S. crop production. Crop Protection Research Institute, CropLife Foundation, Washington DC, USA

    Google Scholar 

  • Gianessi LP, Reigner N (2005) The value of fungicides in US crop production. CropLife Foundation, Crop Protection Research Institute

    Google Scholar 

  • Gianessi LP, Reigner N (2006) The value of fungicides in US crop production. Outlooks Pest Manag 17:209–213

    Google Scholar 

  • Gianessi LP, Reigner NP (2007) The value of herbicides in U.S. Crop Prod Weed Technol 21:559–566

    Google Scholar 

  • Gignouxa CR, Hennb BM, Mountain JL (2011) Rapid, global demographic expansions after the origins of agriculture. Proc Natl Acad Sci USA 108:6044–6049

    Google Scholar 

  • Gilbert SG (2014) Chemical Weapons, interwar years, Toxipedia. http://www.toxipedia.org/display/toxipedia/Chemical+Weapons

  • Goldsworthy MC, Green EL, Smith MA (1943) Fungicidal and phytocidal properties of some metal dialkyl dithiocarbamates. J Agric Res 66:277–291

    CAS  Google Scholar 

  • Goyal P (2003) Ancient crop protection practices: their relevance today. History of Indian Science and Technology. http://www.indianscience.org/essays/t_es_goyal_crop.shtml

  • Gray GP (1916) Phenolic insecticides and fungicides, Bulletin No. 269. University of California, Berkeley, California, USA

    Google Scholar 

  • Guiteras JM (1909) Mercuric chloride as an insecticide. Public Health Rep (1896–1970) 24:1859–1861

    Google Scholar 

  • Gullino ML, Tinivella F, Garibaldi A, Kemmitt GM, Bacci L, Sheppard B (2010) Mancozeb: past present and future. Plant Dis 94:1076–1087

    CAS  PubMed  Google Scholar 

  • Guo Z, Vangapandu S, Sindelar RW, Walker LA, Sindelar RD (2009) Biologically active quassinoids and their chemistry: potential leads for drug design. Curr Med Chem 4:285–308

    Google Scholar 

  • Hamm PC (1974) Discovery, development and current status of the chloroacetamide herbicides. Weed Sci 22:541–545

    Google Scholar 

  • Harker KN, Blackshaw RE, Clayton GW (2001) Timing weed removal in field Pea. Weed Technol 15:277–283

    Google Scholar 

  • Haskell RJ, Doolittle SP (1942) Vegetable seed treatments. Farmers’ Bulletin No. 1862, USDA, Washington D.C., USA

    Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied technology to combat late blight in potatoes caused by Phytophthora infestans. Potato Res 52:249–264

    Google Scholar 

  • Haywood JK (1902) Insecticides and fungicides: chemical composition and effectiveness of certain preparations. United States Department of Agriculture, Farmers’ Bulletin No. 146

    Google Scholar 

  • Hester WF (1943) Fungicidal composition. United States Patent Office, US Patent 2,317,765

    Google Scholar 

  • Hirst KK (2017) Oasis theory—did climate change cause the invention of agriculture? ThoughtCo.com, 6 Mar. https://www.thoughtco.com/k-kris-hirst-166730

  • Hirst KK (2018) The eight founder crops and the origins of agriculture. ThoughtCo.com, October 19th, https://www.thoughtco.com/founder-crops-origins-of-agriculture-171203

  • Holland R (2002) A history of tar distillation at Crew’s Hole, Bristol, SCI Lecture Papers Series, LPS 123/2002

    Google Scholar 

  • Holm FA, Johnson EN (2009) The history of herbicide use for weed management on the prairies. Prairie Soils Crop J Weeds Herbic Manag 2:1–11

    Google Scholar 

  • Holmes E (1958) The role of industrial research and development in weed control in Europe. Weeds 6:245–250

    Google Scholar 

  • Horsfall JG (1975) Fungi and fungicides: the story of a nonconformist. Ann Rev Phytopathol 13:1–14

    CAS  Google Scholar 

  • Huang HT, Yang P (1987) The ancient cultured citrus ant. BioScience 37:665–671

    Google Scholar 

  • Hublin J-J, Ben-Ncer A, Bailey SE, Friedline SE, Neubauer S, Skinner MM, Bergmann I, Le Cabec A, Benazzi S, Harvati K, Gunz P (2017) New fossils from Jebel Irhoud, Morocco, and the Pan-African origin of Homo sapiens. Nature 546:289–292

    CAS  PubMed  Google Scholar 

  • IARC (2001) On the evaluation of carcinogenic risks to humans. Some Thyrotropic Agents, Chlordane and Heptachlor, IARC Monograph, vol 79, pp 411–492

    Google Scholar 

  • IARI (2010) Achievements in Neem Research, Indian Agricultural Research Institute, Indian Council of Agricultural Research, Department of Agricultural Research and Education, Ministry of Agriculture & Farmers Welfare, Government of India, New Delhi, India

    Google Scholar 

  • IPCS (1984) Environmental health criteria 40, Endosulfan, WHO Geneva, Switzerland

    Google Scholar 

  • Janak TW, Grichar WJ (2016) Weed control in corn (Zea mays L.) as influenced by pre-emergence herbicides. Int J Agron 2016:1–9

    Google Scholar 

  • Janakat SM, Hammad F (2013) Chemical composition of amurca generated from Jordanian Olive Oil. Nutr Food Sci 3:186

    Google Scholar 

  • Janek J (2008) History of Horticulture, Roman Agricultural History; Purdue University. http://www.hort.purdue.edu/newcrop/Hort_306/text/lec18.pdf

  • Jarman WM, Ballschmiter K (2012) From coal to DDT: the history of the development of the pesticide DDT from synthetic dyes till silent spring. Endeavour 36(4):131–142

    Google Scholar 

  • Jentsch P (n.d.) Historical perspectives on apple production: fruit tree pest management. Regulation and New Insecticidal Chemistries, Dept. Entomol, Cornell University, Hudson Valley Lab, Highland, New York 12528. http://web.entomology.cornell.edu/jentsch/assets/historical-perspectives-on-apple-production.pdf

  • Johnson GF (1935) The early history of copper fungicides. Agric Hist 9:67–79

    Google Scholar 

  • Johnson SB, Lambert D (2010) Common scab diseases of potatoes. University of Maine, Co-operative Extension, Bulletin #2440

    Google Scholar 

  • Karim SMR (2002) Competitive ability of different weed species. Pak J Agron 1:116–118

    Google Scholar 

  • Kaushik N, Gurudev Singh B, Tomar UK, Naik SN, Vir S, Bisla SS, Sharma KK, Banerjee SK, Thakar P (2007) Regional and habitat variability in azadirachtin content of Indian neem (Azadirachta indica A. Jusieu). Curr Sci 92:1400–1406

    Google Scholar 

  • Kellerman WA, Swingle WT (1890) Preliminary experiments with fungicides for stinking smut of wheat. Kansas State Agricultural College, Bulletin No. 12, Aug 1890. http://www.ksre.k-state.edu/historicpublications/pubs/SB012.PDF

  • Kelly RL (1992) Mobility/sedentism: concepts, archaeological measures and effects. Ann Rev Anthropol 21:43–66

    Google Scholar 

  • Kelly D (2012) Chlorothalonil biological and use profile. Syngenta Presentation, pp 1–46. http://www.cdpr.ca.gov/docs/emon/surfwtr/presentations/syngenta_presentation_2012.pdf

  • Kelton JA, Price AJ (2009) Weed science and management. In: Verheye WH (ed) Soils, plant growth and crop production. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. EOLSS Publishers, Oxford

    Google Scholar 

  • Kenawy MA, Abdel-Hamid YM (2015) Insects in ancient (pharaonic) Egypt: a review of Fauna, their mythological and religious significance and associated diseases. Egypt Acad J Biol Sci 8:15–32

    Google Scholar 

  • Kimmel L, Coelhan M, Leupold G, Vetter W, Parlar H (2000) FTIR specroscopic characterization of chlorinated camphenes and bornenesin technical toxaphene. Environ Sci Technol 34:3041–3045

    CAS  Google Scholar 

  • Kislev ME, Weiss E, Hartmann A (2004) Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc Natl Acad Sci 101:2692–2694

    CAS  PubMed  Google Scholar 

  • Kittleson AR (1951) Parasiticidal compounds containing the NSCCl3 group. United States Patent Office, US Patent 2,553,770

    Google Scholar 

  • Kittleson AR (1952) A new class of organic fungicides. Science 115:84–86

    CAS  PubMed  Google Scholar 

  • Klittich CJ (2008) Milestones in fungicide discovery: chemistry that changed agriculture. Plant Health Progress, vol 9, Apr 2008

    Google Scholar 

  • Knorr LC, Denmark HA, Burnett HC (1968) Occurrence of Brevipalpus mites, leprosis and false leprosis on citrus in Florida. Fla Entomol 51:11–17

    Google Scholar 

  • Knutson R, Smith EG (1999) Impacts of eliminating organophosphates and carbamates from crop production. AFPC Policy Working Paper 99-2, Agricultural and Food Policy Center, Department of Agricultural Economics, Texas A&M University, Texas, USA

    Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84

    Google Scholar 

  • Kraemer H (1906) Dilute sulphuric acid as a fungicide. Proc Am Phil Soc 45:157–163

    Google Scholar 

  • Kudsk P, Streiberg JC (2003) Herbicides—a two edged sword. Weed Res 43:90–102

    CAS  Google Scholar 

  • Kureel RS, Kishore R, Dutt D (2009) Neem: a tree borne oilseed, National Oilseeds & Vegetable Oils Development Board (Ministry of Agriculture, Govt. of India), Gurgaon-122015, India

    Google Scholar 

  • Laforge FB, Haller HL, Smith LE (1933) The determination of the structure of rotenone. Chem Rev 18:181–213

    Google Scholar 

  • Lange WH, Leach LD, Carlson EC (1950) Lindane for wireworm control. Calif Agric 4:5–6

    Google Scholar 

  • Lange WH, Carlson EC, Corrin WR (1951) Seed treatments for the control of seed-corn maggot in Northern California. J Econ Entomol 44:202–208

    CAS  Google Scholar 

  • Lange WH, Carlson EC, Leach LD (1953) Pest control by seed treatment. Calif Agric 7:7–8

    Google Scholar 

  • Langham DR, Grichar J, Dotray P (2007) Review of herbicide research on sesame (Sesamum indicum L.), Version 1, American Sesame Growers Association

    Google Scholar 

  • Latham KJ (2013) Human health and the neolithic revolution: an overview of impacts of the agricultural transition on oral health, epidemiology, and the human body. Nebraska Anthropologist, University of Nebraska, Lincoln, Nebraska

    Google Scholar 

  • Latshaw WL, Zahnley JW (1927) Experiments with sodium chlorate and other chemicals as herbicides for field bindweed. J. Agric Res 35:757–767

    CAS  Google Scholar 

  • LeBaron HM, McFarland JE, Burnside OC (2008) The triazine herbicides: a milestone in the development of weed control technology (Chap. 1). In: The triazine herbicides: 50 years of revolutionizing agriculture. Elsevier B.V., Amsterdam, pp 1–12

    Google Scholar 

  • Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111

    PubMed  Google Scholar 

  • Lipnick RL, Muir DCG (2001) History of persistent, bioaccumulative and toxic chemicals (Chap. 1). ACS Symposium Series 772, pp 1–12

    Google Scholar 

  • Liu J (2010) Phenylurea herbicides (Chap. 80). In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn., pp 1725–1731. ISBN 978-0-12-374367-1

    Google Scholar 

  • MacMillan HG, Christensen A (1927) A study of potato seed treatment for rhizoctonia control. University of Wyoming, Agricultural Experiment Station, Bulletin No. 152

    Google Scholar 

  • MAFF Canada (2017) Agronomy guide for field crops, Pub. 811, Section 13. In: Brown C (ed) Weed control, crop yield losses due to weeds, impact of soil moisture on weed competitiveness. MAFF, Ontario, Canada. ISBN 978-1-4606-9021-5

    Google Scholar 

  • Makokha D, Irakiza R, Malombe I, Le Bourgeois T, Rodenburg J (2016) Dualistic roles and management of non-cultivated plants in lowland rice systems of East Africa, South African. J. Bot. 108:321–330

    Google Scholar 

  • Market Research.com (2015) Global Pyrethrin Market 2015–2019. https://www.marketresearch.com/Infiniti-Research-Limited-v2680/Global-Pyrethrin-9358950/

  • Marlatt CL (1894) Important insecticides: directions for their preparation and use. United States Department of Agriculture, Farmers’ Bulletin No. 19

    Google Scholar 

  • Marlatt CL (1903) Important insecticides: directions for their preparation and use. United States Department of Agriculture, Farmers’ Bulletin No. 127

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 227:504–509

    Google Scholar 

  • McCallan SEA (1930) Studies on fungicides, III the solvent action of spore excretions and other agencies on protective copper fungicides, Cornell experiment station, Ithaca, New York. Memoir 128:25–79

    CAS  Google Scholar 

  • McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433:733–736

    CAS  PubMed  Google Scholar 

  • McIndoo NE (1943) Insecticidal uses of nicotine and tobacco: a condensed summary of the literature 1690–1934. United States Department of Agriculture, Agricultural Research Administration, Bureau of Entomology and Quarantine, E597, Washington, May 1943

    Google Scholar 

  • McIndoo NE, Sievers AF (1917) Quassia extract as a contact insecticide. J Agric Res 10:497–531

    CAS  Google Scholar 

  • McLaughlin Gormley King Company (2010) Pyrethrum: nature’s insecticide, about pyrethrum. https://pyrethrum.com/About_Pyrethrum/History.html

  • Melber J, Kielhorn J, Mangelsdorf I (2004) Coal tar creosote. Concise International Chemical Assessment Document 62

    Google Scholar 

  • Meyer-Thurow G (1982) The industrialization of invention: a case study from the German chemical industry. Isis 73:363–381

    CAS  PubMed  Google Scholar 

  • Michelbacher AE, Bacon OG (1952) Spider mites on walnuts. Calif Agric 6:4–15

    Google Scholar 

  • Michelbacher AE, Middlekauf WW, Akesson NB (1950) Tomato insect studies: DDD and DDT in three year tests with chlorinated hydrocarbons. Calif Agric 4:11–12

    Google Scholar 

  • Mishke T, Brunetti K, Acosta V, Weaver D, Brown M (1985) Agricultural sources of DDT Residues in California’s Environment. A Report Prepared in Response to House Resolution No.53 (1984), California Dept. of Food and Agriculture, Sacremento, California, USA

    Google Scholar 

  • Mitchell PD (2011) Economic assessment of the benefits of Chloro-s-Triazine Herbicides to U.S. Corn, Sorghum and Sugarcane Producers, University of Madison-Wisconsin, Dept. of Agriculture and Applied Economics, Staff Paper No. 564

    Google Scholar 

  • Mitchell PD (2014) Market level assessment of the economic benefits of atrazine in the United States. Pest Manag Sci 70(11):1684–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moechnig MJ, Stoltenberg DE, Boerboom CM, Binnir LK (2013) Variations in corn yield losses due to weed competition. University of Wisconsin-Extension, Madison, USA. https://extension.soils.wisc.edu/wcmc/variations-in-corn-yield-losses-due-to-weed-competition/

  • Monaco TJ, Weller SC, Ashton FM (2002) Weed science: principles and practices. In: Introduction to weed science, weed impacts, 4th edn. Wiley, New York, pp 6–9. ISBN 0-471-37051-7

    Google Scholar 

  • Morgan ED (2007) Azadirachtin, a scientific gold mine. Bioorg Med Chem 17:4096–4105

    Google Scholar 

  • Morone JG, Woodhouse EJ (1986) Averting catastrophe: strategies for regulating risky technologies. In: Toxic chemicals. University of California Press, Berkeley

    Google Scholar 

  • Moss S (2013) Black-grass (Alopecurus myosuroides), Rothamsted Technical Publication—revised 2013, Rothamsted Research, Rothamsted, UK

    Google Scholar 

  • Moss SR, Storkey J, Cussans JW, Perryman SAM, Hewitt MV (2004) The Broadbalk long-term experiment at rothamsted: what has it told us about weeds? Weed Sci 52:864–873

    CAS  Google Scholar 

  • Movahedpour F, Nassab ADM, Shakiba MR, Amini S, Aharizad S (2013) Weed interference on soybean performance by using integrated weed management and empirical model. Int Res J Appl Basic Sci 4:118–124

    Google Scholar 

  • Muir P (2012) History of pesticide use: DDT case study. Agricultural Pesticides, Human Impact on Ecosystems, Oregon State University

    Google Scholar 

  • Mukula J, Ruuttunen E (1969) Chemical weed control in Finland in 1887–1965. Seria Agricultura No. 31, Supp 1, Ann Agric Fenniae 8:1–43

    Google Scholar 

  • Müller U (2002) Chemical crop protection research. Methods and challenges. Pure Appl Chem 74:2241–2246

    Google Scholar 

  • Mummert A, Esche E, Robinson J, Armelagos GJ (2011) Structure and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ Human Biol 9:284–301

    Google Scholar 

  • National Academy of Sciences (1968) Classification and chemistry of herbicides (Chap. 10). In: Principles of plant and animal pest control, vol 2. Weed Control, Pub. No. 1597, pp 164–165

    Google Scholar 

  • National Academy of Sciences (2000) History of pest control (Chap. 1). In: The future role of pesticides in US Agriculture. National Academy Press, Washington, D.C., USA, pp 20–32. ISBN 0-390-06526-7

    Google Scholar 

  • Nauen R, Bretschneider T (2002) New modes of action of insecticides. Pest Outlook 241–245

    CAS  Google Scholar 

  • Nietzki R (1892) Chemistry of the organic dyestuffs. Pub. Gurney & Jackson, London

    Google Scholar 

  • Noldin JA, Chandler JM, Mccauley GN, Sij JW Jr (1998) Red rice (Oryza sativa) and Echinochloa spp. control in texas gulf coast soybean (Glycine max). Weed Technol 12:677–683

    CAS  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Ogbuewu IP, Odoemenam VU, Obikaonu HO, Opara MN, Emenaiom OO, Uchegbu MC, Okoli IC, Esonu BO, Iloeje MU (2011) The growing importance of neem (Azadirachta indica A Juss) in agriculture, industry, medicine and environment: a review. Res J Med Plants 5:230–245

    Google Scholar 

  • Ohta H (2013) Historical development of pesticides in Japan, Center of the History of Japanese Technology, Survey Reports on the Systemization of Technologies, No. 18, March 2013, National Museum of Nature and Science of Japan

    Google Scholar 

  • Olsson O (2001) The rise of neolithic agriculture. Working Paper in Economics No. 57, Dept. of Economics, Gothenburg University, Gothenburg, Sweden

    Google Scholar 

  • Orson J, Thomas M, Kudsk P (2001) Impact of generic herbicides on current and future weed problems and crop management. Proc BCPC Conf Weeds 1:123–132

    Google Scholar 

  • Ortega JC (1948) Codling moth in walnuts: Southern California studies of varying methods of DDT application. Calif Agric 2:4–14

    Google Scholar 

  • Pammel LH (1911) Weeds of the farm and garden. Pub. Kegan Paul, Trench, Trübner & Co. Ltd., London

    Google Scholar 

  • Pan L, Feng X, Zhang H (2017) Dissipation and residues of pyrethrins in leaf lettuce under greenhouse and open field conditions. Int J Environ Res Public Health 14:Art.822

    PubMed Central  Google Scholar 

  • Papworth DS (1958) Practical experience with the control of ants in Britain. Ann Appl Biol 46:106–111

    Google Scholar 

  • Pascall-Villalobos MJ, Miras AR (1999) Anti-insect activity of plant extracts from the wild flora in Southeastern Spain. Biochem Syst Ecol 27:1–10

    Google Scholar 

  • Perkins JH (1982) A new technology: the introduction of insecticides (Chap. 1). In: Insects, experts and the insecticide crisis. Plenum Press, New York. ISBN-13: 978-1-4684-4000-3

    Google Scholar 

  • Peryea FJ (1998) Historical use of lead arsenate insecticides, resulting soil contamination and implications for soil remediation. In: Proceedings, 16th world congress of soil science, Montpellier, France, 20–26

    Google Scholar 

  • Peterson GE (1967) The discovery and development of 2,4-D. Agric Hist 41:243–254

    Google Scholar 

  • Peterson MA, McMaster SA, Riechers DE, Skelton J, Stahlam PW (2016) 2,4-D past, present and future: a review. Weed Technol 30:303–345

    Google Scholar 

  • Petruzzello M (2019) 18 food crops developed in the Americas, Encyclopaedia Britannica. https://www.britannica.com/list/18-food-crops-developed-in-the-americas

  • Pharaonic Egypt (2000) Pests in ancient Egypt: extermination and remedies, insects, rodents, birds. http://webcache.googleusercontent.com/search?q=cache, http://www.reshafim.org.il/ad/egypt/timelines/topics/pests.htm

  • Phillips WM (1961) Control of field bindweed by cultural and chemical methods. Agricultural Research Service, U.S. Department of Agriculture, Technical Bulletin No. 1249, Washington D.C., USA

    Google Scholar 

  • Pierce NB (1900) Peach leaf curl: its nature and treatment. US Department of Agriculture, Department of Vegetable Physiology and Pathology, Bulletin No. 20

    Google Scholar 

  • Pimental D (2009) Pesticides and pest control. In: Rajinder P, Dhawan A (eds) Integrated pest management: innovation-development process, vol 1. Springer, Netherlands, pp 83–87. ISBN 978-1-4020-8992-3

    Google Scholar 

  • Pimental D, McLaughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, Vancini F, Roach WJ, Graap E, Keeton WS, Selig G (1993) Environmental and economic effects of reducing pesticide use in agriculture. Agric Ecosyst Environ 46:273–288

    Google Scholar 

  • Pokorny R (1941) New compounds, some chlorophenoxyacetic acids. J Am Chem Soc 63:1768

    CAS  Google Scholar 

  • Potter MF (2008) The history of bed bug management. Pest Control Technology Magazine, Aug 2008

    Google Scholar 

  • PPDB (2018) University of Hertfordshire, Pesticides Properties Database, Dicofol. https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/223.htm

  • Price TD, Bar-Yosef O (2011) The origins of agriculture: new data, new ideas, an introduction to supplement 4. Curr Anthropol 52(Suppl 4):S163–S174

    Google Scholar 

  • Prostko EP, Johnson WC III, Millinix BG Jr (2001) Annual grass control with preplant incorporated and pre-emergence applications of ethalfluralin and pendimethalin in Peanut (Arachis hypogaea). Weed Technol 15:36–41

    CAS  Google Scholar 

  • Raman VK, Radcliffe EB (1992) Pest biology, damage and distribution in the potato crop (Chap. 11). In: Harris PM (ed) Part 2, Insect Pests, vol 1. Springer-Science + Business Media, B.V., p 485

    Google Scholar 

  • Reilly D (1951) Salts, acids and alkalis in the 19th century: a comparison between advances in France, England and Germany. Isis 42:287–296

    CAS  PubMed  Google Scholar 

  • Reinhardt C, Ganzel W (2003) Farming in the 1930s, Backlash—100,000 Guinea Pigs & the FDA, Wessels Living History Farm, York, Nebraska, USA

    Google Scholar 

  • Reynolds JL (1915)The fruit industry, the benefits of spraying. Colonist 77:2

    Google Scholar 

  • Food and Agricultural Materials Inspection Centre (FAMIC) Japan, What are Agricultural Chemicals? The History of Agricultural Chemicals. https://www.acis.famic.go.jp/eng/chishiki/01.htm

  • RIAS Inc. (2006) Assessment of the economic and related benefits to Canada of phenoxy. Herbicides, RIAS Inc., Toronto

    Google Scholar 

  • Richardson HD (1847) The pests of the farm, with instructions for their extirpation. Pub. J. McGlashan, Dublin, Eire

    Google Scholar 

  • Richardson HD (1852) The pests of the farm which annoy the American farmer with directions for their destruction. Pub. A.O. Moore & Co., New York

    Google Scholar 

  • Richardson HW (1997) Copper fungicides/bactericides (Chap. 5). In: Handbook of copper compounds and applications. CRC Press, Boca Raton. ISBN 9781482277463

    Google Scholar 

  • Richerson PJ, Boyd R, Bettinger RL (2001) Was agriculture impossible during the pleistocene but mandatory during the holocene? A climate change hypothesis. Am Antiq 66:387–411

    Google Scholar 

  • Roarck RC (1951) A Digest of information on Chlordane, E817, Agricultural Research Administration, Bureau of Entomology and Plant Quarantine, United States Department of Agriculture

    Google Scholar 

  • Roberts JW (1936a) Recent developments in fungicides: spray materials. Bot Rev 2:586–600

    Google Scholar 

  • Roberts JW (1936b) Recent developments in fungicides II: spray materials 1936–1944. Bot Rev 12:538–547

    Google Scholar 

  • Roberts JR, Reigart JR (2016) N-methyl carbamates, recognition and management of pesticide poisonings, 6th edn, Section II—Insecticides (Chap. 6), US EPA, Washington D.C., USA, p 56

    Google Scholar 

  • Robertshaw P (1998) Medieval household pest control, the medieval world view and Ars Magica, Natural History of the Middle Ages. http://www.granta.demon.co.uk/arsm/jg/pest.html

  • Royal Society of Chemistry (2019) Periodic table, arsenic, history. http://www.rsc.org/periodic-table/element/33/arsenic

  • Rudrappa T, Bonsall J, Bais HP (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive Oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918

    CAS  PubMed  Google Scholar 

  • Ruehle GD (1944) New fungicides for potatoes and tomatoes. Proc Florida State Hort Soc 57:201–206

    Google Scholar 

  • Russell PE (2006) The development of commercial disease control. Plant Pathol 55:585–594

    Google Scholar 

  • Saleh MA (1983) Capillary gas chromatography-electron impact and chemical ionization mass spectrometry of toxaphene. J Agric Food Chem 31:748–751

    CAS  Google Scholar 

  • Sanguankeo PP, Leon RG, Malone J (2009) Impact of weed management practices on grapevine growth and yield components. Weed Sci 57:103–107

    CAS  Google Scholar 

  • Sauls JW (1999) False spider mite damage, texas citrus & subtropical fruits. Horticultural Sciences Department, Texas A&M University, Texas 77843–2133, USA

    Google Scholar 

  • Schooley T, Weaven MJ, Mullins D, Eick M (2008) The history of lead arsenate use in apple production: comparison of its impact in Virginia with other states. J Pestic Saf Educ 10:22–53

    Google Scholar 

  • Scursoni JA, Martín A, Catanzaro MP, Quiroga J, Goldar F (2011) Evaluation of post-emergence herbicides for the control of wild oat (Avena fatua L.) in Wheat and Barley in Argentina. Crop Prot 30:18–23

    CAS  Google Scholar 

  • Secoy DM, Smith AE (1977) Superstition and social practices against agricultural pests. Environ Rev 2:2–18

    Google Scholar 

  • Secoy DM, Smith AE (1983) Lineage of lime sulfur as an insecticide and fungicide. Bull Entomol Soc Am 29:18–23

    Google Scholar 

  • Semple EC (1928) Ancient mediterranean history: part I. Agric Hist 2:61–98

    Google Scholar 

  • Sharma V, Malik AK, Aulakh JS (2003) Thiram: degradation, application and analytical methods. J Environ Monit 5:17–23

    Google Scholar 

  • Shaw H (1946) Some uses of DDT in agriculture. Nature 157:285–287

    CAS  PubMed  Google Scholar 

  • Shearer PW (2001) Management of San Jose Scale for Orchard Crops, Mid-Columbia Agricultural Research & Extension Center, University of Oregon, Oregon, USA. http://extension.oregonstate.edu/umatilla/mf/sites/default/files/Peter_Shearer_OR_Blue_Mountain_09.pdf

  • Shiva V, Hollabhar R (2008) Piracy by Patents; The Case of the Neem Tree, Published by: YANAC (Scribd), 19 Nov 2008. http://www.scribd.com/doc/8156919/Piracy-by-Patents-the-Case-of-the-Neem-tree-VANDANA-SHIVA-and-RADHA-HOLLA-BHAR

  • Shoham J (2013) Quantifying the economic and environmental benefits of paraquat. Outlooks Pest Manag 24:64–69

    Google Scholar 

  • Smart NA (1968) Use and residues of mercury compounds in agriculture. Residue Rev/Rückstands-Ber 23:1–36

    CAS  Google Scholar 

  • Smith LE (1937) The use of phenothiazine as an insecticide. US Department of Agriculture, Bureau of Entomology and Plant Quarantine, E-399

    Google Scholar 

  • Smith VL (1975) The primitive hunter culture, pleistocene extinction and the rise of agriculture. J Polit Econ 83:727–756

    Google Scholar 

  • Smith AE, Secoy DM (1975) Forerunners of pesticides in classical Greece and Rome. J Agric Food Chem 23:1050–1055

    CAS  PubMed  Google Scholar 

  • Smith AE, Secoy DM (1976a) A compendium of inorganic substances used in European pest control before 1850. J Agric Food Chem 24:1180–1186

    CAS  PubMed  Google Scholar 

  • Smith AE, Secoy DM (1976b) Salt as a pesticide, manure and seed steep. Agric Hist 50:506–516

    Google Scholar 

  • Snelson JT (1977) The importance of chlorinated hydrocarbons in world agriculture. Ecotoxicol Environ Saf 1:17–30

    CAS  PubMed  Google Scholar 

  • Soltani N, Dille JA, Burke IC, Everman W (2016) Potential corn yield losses from weeds in North America. Weed Technol 30:979–984

    Google Scholar 

  • Soltani N, Dille JA, Burke IC, Everman W (2017) Perspectives on potential soybean yield losses from weeds in North America. Weed Technol 31:1–7

    Google Scholar 

  • Sourcewatch (2012) History of roundup ready crops, sourcewatch. Center for Media and Democracy

    Google Scholar 

  • Stoller EW, Wax LM, Slife FW (1979) Yellow Nutsedge (Cyperus esculentus) competition and control in corn (Zea mays). Weed Sci 27:32–37

    Google Scholar 

  • Streibig JC (2003) Assessment of herbicide effects, short history of chemical control. European Weed Research Society, Education and Training, pp 4–7

    Google Scholar 

  • Syngenta (2016) Reglone® desiccant herbicide. Syngenta Canada Inc., Guelph, Ontario, Canada

    Google Scholar 

  • Tabashnik BE, van Rensburg JB, Carrière Y (2009) Field-evolved insect resistance to Bt crops—definition, theory and data. J Econ Entomol 102:2011

    CAS  PubMed  Google Scholar 

  • Texas A&M (2019) Landscape IPM, Botanical Insecticides, Texas A&M University—Department of Entomology, College Station, Texas, USA

    Google Scholar 

  • Thacker JRM (2002) An introduction to arthropod pest control (Chap. 1). In: A brief history of arthropod pest control. Cambridge University Press, Cambridge. ISBN 0-521-56106X

    Google Scholar 

  • Thompson NF, Robbins WW (1926) Methods of eradicating the common barberry (Berberis Vulgaris L.), Bulletin No. 1451, United States Department of Agriculture, Washington D.C., USA

    Google Scholar 

  • Timmons FL (1941) Results of bindweed control experiments at the fort hays branch station, Hays, Kansas, 1935 to 1940. Bulletin 296, Kansas State College of Agriculture and Applied Science, Manhattan, Kansas, USA

    Google Scholar 

  • Timmons FL (1970) A history of weed control in the United States and Canada. Weed Sci 18:294–307

    Google Scholar 

  • Tisdale WH, Williams I (1934) Disinfectant, United States Patent Office, US Patent 1,972,961. http://www.freepatentsonline.com/1972961.pdf

  • Torkey HM, Abou-Yousef HM, Abdel Azeiz AZ, Farid HEA (2009) Insecticidal Effect of Cucurbitacin E Glycoside Isolated from Citrullus colocynthis against Aphis craccivora. Aust J Basic Appl Sci 3:4060–4066

    CAS  Google Scholar 

  • Tozzi A (1998) A brief history of the development of piperonyl butoxide as an insecticide synergist (Chap. 1). In: Jones DG (ed) Piperonyl butoxide: the insecticide synergist. Academic Press. ISBN 0-12-286975-3

    Google Scholar 

  • Travis AS (1990) Perkin’s mauve: ancestor of the organic chemical industry. Technol Cult 31:51–82

    Google Scholar 

  • Troyer JR (2001) In the beginning: the multiple discovery of the first hormone herbicides. Weed Sci 49:290–297

    CAS  Google Scholar 

  • Turner RS (2005) After the Famine: Plant Pathology, Phytophthora infestans, and the Late Blight of Potatoes, 1845–1960. Hist Stud Phys Biol Sci 35:341–370

    Google Scholar 

  • Tweedy BG (1981) Inorganic sulfur as a fungicide. Res Rev 78:43–68

    CAS  Google Scholar 

  • Upawansa GK, Wagachchi R (2018) Activating all powers in Sri Lankan Agriculture, Living Heritage Trust, Sri Lanka. http://goviya.com/activating-powers.htm

  • US EPA (2003) United States Environmental Protection Agency, Reregistration Eligibility Decision (RED) for Diuron, 30 Sept, pp 85–91

    Google Scholar 

  • US EPA (2004) Interim reregistration eligibility decision for carbaryl. United States EPA, Washington D.C., USA

    Google Scholar 

  • US EPA (2006a) United States environmental protection agency, Interim Reregistration Eligibility Decision (IRED) for Atrazine, 6 Apr, pp 79–84

    Google Scholar 

  • US EPA (2006b) United States environmental protection agency, Reregistration Eligibility Decision (RED) for Simazine, 6 Apr, pp 46–49

    Google Scholar 

  • US EPA (2015) US Environmental Protection Agency, DDT—a brief history and status, Development of DDT, US EPA, 5 Nov

    Google Scholar 

  • US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2002) Toxicological Profile for Methoxychlor, Production, Chapter 5 Import/Export, Use and Disposal, pp 143–146

    Google Scholar 

  • Vaughn KC, Lehnen LP Jr (1991) Mitotic disrupter herbicides. Weed Sci 39:450–457

    CAS  Google Scholar 

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007) Synthesis of azadirachtin: a long but successful journey. Angew Chem Int Ed 46:7629–7632

    CAS  Google Scholar 

  • Verma LR (1998) Indigenous technology knowledge for watershed management in Upper North-West Himalayas of India. Negri A, Sharma PN (eds) PWMTA Field Document No.15, FAO Document Repository

    Google Scholar 

  • Vivian DL, Acree F Jr (1941) A second list of organic sulfur compounds used as insecticides. US Bureau of Entomology and Plant Quarantine, Division of Insecticide Investigations, E-539

    Google Scholar 

  • Wardle RA, Buckle P (1923) Principles of insect control (Chap. VI). In: Insecticides. University Press, Manchester, p 81

    Google Scholar 

  • Ware GW, Whiteacre DM (2004) An introduction to insecticides, 4th edn. MeisterPro Information Resources, Ohio, USA, pp 61–69

    Google Scholar 

  • Watson J (2004) The significance of Mr. Richard Buckley’s exploding trousers: reflections on an aspect of technological change in New Zealand dairy farming between the world wars. Agric Hist 78:346–360

    Google Scholar 

  • Weber GF (1931) Spraying and dusting cucumbers for control of downy mildew from 1925–1930. University of Florida, Agricultural Experiment Station, Bulletin No. 230

    Google Scholar 

  • Weisdorf J (2005) From foraging to farming, explaining the neolithic revolution. J Econ Surv 19:561–586

    Google Scholar 

  • Weisdorf J (2009) Why did the first farmers toil? Human metabolism and the origins of agriculture. Eur Rev Econ Hist 13:157–172

    Google Scholar 

  • Weiss E, Zohary D (2011) The neolithic southwest asian founder crops: their biology and archaeobotany. Current Anthropol 52(S4):S237–S254

    Google Scholar 

  • Westgate WA, Raynor RN (1940) A new selective spray for the control of certain weeds. University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, California, USA, Bulletin 634

    Google Scholar 

  • White RP (1928) Potato experiments for the control of rhizoctonia, scab and blackleg: 1922–1927. Technical Bulletin No.24, Kansas State Agricultural College, Kansas, USA

    Google Scholar 

  • Williams JS, Cooper RM (2004) The oldest fungicide and newest phytoalexin—a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol 53:263–279

    CAS  Google Scholar 

  • Williams MM, Thoreby E, Mergel M (2011) Trifluralin in toxipedia (Connecting Science and People)

    Google Scholar 

  • Wink M (1994) Biological activities and potential application of Lupin Alkaloids, Advances in Lupin Research, Neves-Martin JM, Beirao da Costa ML (eds). ISA Press, Lisbon

    Google Scholar 

  • Wink M, Meisner C, Witte L (1995) Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139–153

    CAS  Google Scholar 

  • Woolman HM, Humphrey HH (1924) Summary of the literature on bunt, or stinking smut, of wheat. United States Dept. of Agriculture, Dept. Bulletin No. 1210

    Google Scholar 

  • World Bank (2018) World Bank Data, Cereal Yield 2010–2014. https://data.worldbank.org/indicator/AG.YLD.CREL.KG

  • Zadoks JC (2013) Crop protection in medieval agriculture. Sidestone Press, Leiden. ISBN 978-90-8890-187-4

    Google Scholar 

  • Zimdahl RL (1969) The etymology of herbicide. Weed Sci 17:137–139

    Google Scholar 

  • Zimdahl RL (2010) Development of herbicides after 1945 (Chap. 6). In: A history of weed science in the United States. Elsevier B.V., Amsterdam. ISBN 978-0-12-381495-1

    Google Scholar 

  • Zimdahl RL (2015) DDT: an insecticide (Chap. 7). In: Six chemicals that changed agriculture. Academic Press, Elsevier B.V., Amsterdam, pp 115–133

    Google Scholar 

  • Zucconi LM (2007) Medicine and religion in ancient Egypt. Relig Compass 1:26–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Unsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Unsworth, J., Nakagawa, Y., Harris, C., Kleter, G. (2019). The Battle for a Sustainable Food Supply. In: Vaz Jr., S. (eds) Sustainable Agrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-17891-8_2

Download citation

Publish with us

Policies and ethics