Skip to main content

Animal Models in Uveal Melanoma

  • Chapter
  • First Online:
Clinical Ophthalmic Oncology

Abstract

Animal models play an important role in increasing our understanding of tumor biology, growth, and metastasis, as well as in helping to establish novel therapies against human malignancies. This chapter provides an introduction to the types of animal models that have been established for studying uveal melanoma (UM). Animal models in UM can be grouped into the following categories: spontaneous models, syngeneic models, xenotransplantation models, transgenic models, and induced models. We focus on a general classification of these model types, as well as on summarizing the advantages and limitations of each model and their application to studying specific aspects of the disease. This is followed by a discussion on how we can interpret results from animal studies to better understand several aspects of UM, with a focus on primary ocular disease, the natural history of UM, cancer angiogenesis and immunology, tumor dormancy, metastasis, liquid biopsy, and treatment strategies. Many attempts have been made to create optimal models that mimic UM biology, disease course and metastasis, but challenges remain in imitating the genetic, histologic, immunologic, and metastatic features of UM. However, while no one model is ideal, each model provides certain benefits that make them appropriate to answer a specific scientific question. When the proper model is selected to mimic specific aspects of the disease, animal models can serve as powerful tools to investigate the biology of UM and identify novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harbour JW, Chen R. The DecisionDx-UM gene expression profile test provides risk stratification and individualized patient care in uveal melanoma. PLoS Curr. 2013;5.

    Google Scholar 

  2. Stei MM, Loeffler KU, Holz FG, Herwig MC. Animal models of uveal melanoma: methods, applicability, and limitations. Biomed Res Int. 2016;2016:4521807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Malho P, Dunn K, Donaldson D, Dubielzig RR, Birand Z, Starkey M. Investigation of prognostic indicators for human uveal melanoma as biomarkers of canine uveal melanoma metastasis. J Small Anim Pract. 2013;54(11):584–93.

    Article  CAS  PubMed  Google Scholar 

  4. Planellas M, Pastor J, Torres MD, Pena T, Leiva M. Unusual presentation of a metastatic uveal melanoma in a cat. Vet Ophthalmol. 2010;13(6):391–4.

    Article  PubMed  Google Scholar 

  5. Giuliano EA, Chappell R, Fischer B, Dubielzig RR. A matched observational study of canine survival with primary intraocular melanocytic neoplasia. Vet Ophthalmol. 1999;2(3):185–90.

    Article  PubMed  Google Scholar 

  6. Grahn BH, Peiffer RL, Cullen CL, Haines DM. Classification of feline intraocular neoplasms based on morphology, histochemical staining, and immunohistochemical labeling. Vet Ophthalmol. 2006;9(6):395–403.

    Article  PubMed  Google Scholar 

  7. Day MJ, Lucke VM. Melanocytic neoplasia in the cat. J Small Anim Pract. 1995;36(5):207–13.

    Article  CAS  PubMed  Google Scholar 

  8. Cao J, Jager MJ. Animal eye models for uveal melanoma. Ocul Oncol Pathol. 2015;1(3):141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grossniklaus HE, Barron BC, Wilson MW. Murine model of anterior and posterior ocular melanoma. Curr Eye Res. 1995;14(5):399–404.

    Article  CAS  PubMed  Google Scholar 

  10. Kilian MM, Loeffler KU, Pfarrer C, Holz FG, Kurts C, Herwig MC. Intravitreally injected HCmel12 melanoma cells serve as a mouse model of tumor biology of intraocular melanoma. Curr Eye Res. 2016;41(1):121–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yang H, Brackett CM, Morales-Tirado VM, et al. The Toll-like receptor 5 agonist entolimod suppresses hepatic metastases in a murine model of ocular melanoma via an NK cell-dependent mechanism. Oncotarget. 2016;7(3):2936–50.

    PubMed  Google Scholar 

  12. Romanowska-Dixon B, Urbanska K, Elas M, Pajak S, Zygulska-Mach H, Miodonski A. Angiomorphology of the pigmented Bomirski melanoma growing in hamster eye. Ann Anat. 2001;183(6):559–65.

    Article  CAS  PubMed  Google Scholar 

  13. Lambrou FH, Chilbert M, Mieler WF, Williams GA, Olsen K. A new technique for subchoroidal implantation of experimental malignant melanoma. Invest Ophthalmol Vis Sci. 1988;29(6):995–8.

    CAS  PubMed  Google Scholar 

  14. Krause M, Kwong KK, Xiong J, Gragoudas ES, Young LH. MRI of blood volume and cellular uptake of superparamagnetic iron in an animal model of choroidal melanoma. Ophthalmic Res. 2002;34(4):241–50.

    Article  CAS  PubMed  Google Scholar 

  15. Fabian ID, Rosner M, Fabian I, et al. Low thyroid hormone levels improve survival in murine model for ocular melanoma. Oncotarget. 2015;6(13):11038–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xue S, Yang H, Qiao J, et al. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc Natl Acad Sci U S A. 2015;112(21):6607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rimoldi D, Salvi S, Lienard D, et al. Lack of BRAF mutations in uveal melanoma. Cancer Res. 2003;63(18):5712–5.

    CAS  PubMed  Google Scholar 

  18. Greene HS, Harvey EK. The growth and metastasis of amelanotic melanomas in heterologous hosts. Cancer Res. 1966;26(4):706–14.

    CAS  PubMed  Google Scholar 

  19. Mueller AJ, Maniotis AJ, Freeman WR, et al. An orthotopic model for human uveal melanoma in SCID mice. Microvasc Res. 2002;64(2):207–13.

    Article  PubMed  Google Scholar 

  20. Braun RD, Abbas A, Bukhari SO, Wilson W 3rd. Hemodynamic parameters in blood vessels in choroidal melanoma xenografts and rat choroid. Invest Ophthalmol Vis Sci. 2002;43(9):3045–52.

    PubMed  Google Scholar 

  21. van der Ent W, Burrello C, Teunisse AF, et al. Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci. 2014;55(10):6612–22.

    Article  PubMed  CAS  Google Scholar 

  22. Blanco PL, Marshall JC, Antecka E, et al. Characterization of ocular and metastatic uveal melanoma in an animal model. Invest Ophthalmol Vis Sci. 2005;46(12):4376–82.

    Article  PubMed  Google Scholar 

  23. Blanco G, Saornil AM, Domingo E, et al. Uveal melanoma model with metastasis in rabbits: effects of different doses of cyclosporine A. Curr Eye Res. 2000;21(3):740–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Velasco R, Morilla-Grasa A, Saornil-Alvarez MA, et al. Efficacy of five human melanocytic cell lines in experimental rabbit choroidal melanoma. Melanoma Res. 2005;15(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  25. Di Cesare S, Maloney S, Fernandes BF, et al. The effect of blue light exposure in an ocular melanoma animal model. J Exp Clin Cancer Res. 2009;28:48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marshall JC, Fernandes BF, Di Cesare S, et al. The use of a cyclooxygenase-2 inhibitor (Nepafenac) in an ocular and metastatic animal model of uveal melanoma. Carcinogenesis. 2007;28(9):2053–8.

    Article  CAS  PubMed  Google Scholar 

  27. Marshall JC, Nantel A, Blanco P, Ash J, Cruess SR, Burnier MN Jr. Transcriptional profiling of human uveal melanoma from cell lines to intraocular tumors to metastasis. Clin Exp Metastasis. 2007;24(5):353–62.

    Article  CAS  PubMed  Google Scholar 

  28. Odashiro AN, Pereira RP, Marshall J-C, Godeiro K, Burnier MN Jr. Skin cancer models. Drug Discov Today Dis Model. 2005;2(1):5.

    Article  CAS  Google Scholar 

  29. Xu XL, Hu DN, Iacob C, et al. Effects of zeaxanthin on growth and invasion of human uveal melanoma in nude mouse model. J Ophthalmol. 2015;2015:392305.

    PubMed  PubMed Central  Google Scholar 

  30. Hu K, Babapoor-Farrokhran S, Rodrigues M, et al. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget. 2016;7(7):7816–28.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu FX, Luo J, Mo JS, et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25(6):822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barisione G, Fabbi M, Gino A, et al. Potential role of soluble c-Met as a new candidate biomarker of metastatic uveal melanoma. JAMA Ophthalmol. 2015;133(9):1013–21.

    Article  PubMed  Google Scholar 

  33. Susskind D, Hurst J, Rohrbach JM, Schnichels S. Novel mouse model for primary uveal melanoma: a pilot study. Clin Exp Ophthalmol. 2017;45(2):192–200.

    Article  PubMed  Google Scholar 

  34. van der Ent W, Burrello C, de Lange MJ, et al. Embryonic Zebrafish: different phenotypes after injection of human uveal melanoma cells. Ocul Oncol Pathol. 2015;1(3):170–81.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kalirai H, Shahidipour H, Coupland SE, Luyten G. Use of the chick embryo model in uveal melanoma. Ocul Oncol Pathol. 2015;1(3):133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luyten GP, Mooy CM, De Jong PT, Hoogeveen AT, Luider TM. A chicken embryo model to study the growth of human uveal melanoma. Biochem Biophys Res Commun. 1993;192(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  37. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73(17):5315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hidalgo M, Amant F, Biankin AV, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heegaard S, Spang-Thomsen M, Prause JU. Establishment and characterization of human uveal malignant melanoma xenografts in nude mice. Melanoma Res. 2003;13(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  40. Kageyama K, Ohara M, Saito K, et al. Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. J Transl Med. 2017;15(1):145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Triozzi PL, Aldrich W, Singh A. Effects of interleukin-1 receptor antagonist on tumor stroma in experimental uveal melanoma. Invest Ophthalmol Vis Sci. 2011;52(8):5529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang H, Fang G, Huang X, Yu J, Hsieh CL, Grossniklaus HE. In-vivo xenograft murine human uveal melanoma model develops hepatic micrometastases. Melanoma Res. 2008;18(2):95–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Barak V, Frenkel S, Valyi-Nagy K, et al. Using the direct-injection model of early uveal melanoma hepatic metastasis to identify TPS as a potentially useful serum biomarker. Invest Ophthalmol Vis Sci. 2007;48(10):4399–402.

    Article  PubMed  Google Scholar 

  44. Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008;1(2–3):78–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eyles J, Puaux AL, Wang X, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest. 2010;120(6):2030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng Y, Zhang G, Li G. Targeting MAPK pathway in melanoma therapy. Cancer Metastasis Rev. 2013;32(3–4):567–84.

    Article  CAS  PubMed  Google Scholar 

  47. Albert DM, Kumar A, Strugnell SA, et al. Effectiveness of 1alpha-hydroxyvitamin D2 in inhibiting tumor growth in a murine transgenic pigmented ocular tumor model. Arch Ophthalmol. 2004;122(9):1365–9.

    Article  CAS  PubMed  Google Scholar 

  48. Tolleson WH, Doss JC, Latendresse J, et al. Spontaneous uveal amelanotic melanoma in transgenic Tyr-RAS+ Ink4a/Arf−/− mice. Arch Ophthalmol. 2005;123(8):1088–94.

    Article  CAS  PubMed  Google Scholar 

  49. Teh JL, Chen S. Glutamatergic signaling in cellular transformation. Pigment Cell Melanoma Res. 2012;25(3):331–42.

    Article  CAS  PubMed  Google Scholar 

  50. Schiffner S, Braunger BM, de Jel MM, Coupland SE, Tamm ER, Bosserhoff AK. Tg(Grm1) transgenic mice: a murine model that mimics spontaneous uveal melanoma in humans? Exp Eye Res. 2014;127:59–68.

    Article  CAS  PubMed  Google Scholar 

  51. Huang JL, Urtatiz O, Van Raamsdonk CD. Oncogenic G protein GNAQ induces uveal melanoma and intravasation in mice. Cancer Res. 2015;75(16):3384–97.

    Article  CAS  PubMed  Google Scholar 

  52. Chen X, Wu Q, Tan L, et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene. 2014;33(39):4724–34.

    Article  CAS  PubMed  Google Scholar 

  53. Johansson P, Aoude LG, Wadt K, et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget. 2016;7(4):4624–31.

    Article  PubMed  Google Scholar 

  54. Amaro A, Gangemi R, Piaggio F, et al. The biology of uveal melanoma. Cancer Metastasis Rev. 2017;36(1):109–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25(6):831–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel BR, Tall GG. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma. Oncogene. 2016;5(6):e236.

    Article  CAS  Google Scholar 

  57. Mouti MA, Dee C, Coupland SE, Hurlstone AF. Minimal contribution of ERK1/2-MAPK signalling towards the maintenance of oncogenic GNAQQ209P-driven uveal melanomas in zebrafish. Oncotarget. 2016;7(26):39654–70.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Albert DM, Shadduck JA, Craft JL, Niederkorn JY. Feline uveal melanoma model induced with feline sarcoma virus. Invest Ophthalmol Vis Sci. 1981;20(5):606–24.

    CAS  PubMed  Google Scholar 

  59. Pe’er J, Folberg R, Massicotte SJ, et al. Clinicopathologic spectrum of primary uveal melanocytic lesions in an animal model. Ophthalmology. 1992;99(6):977–86.

    Article  PubMed  Google Scholar 

  60. Braun RD, Vistisen KS. Modeling human choroidal melanoma xenograft growth in immunocompromised rodents to assess treatment efficacy. Invest Ophthalmol Vis Sci. 2012;53(6):2693–701.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mueller AJ, Folberg R, Freeman WR, et al. Evaluation of the human choroidal melanoma rabbit model for studying microcirculation patterns with confocal ICG and histology. Exp Eye Res. 1999;68(6):671–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ma D, Niederkorn JY. Efficacy of tumor-infiltrating lymphocytes in the treatment of hepatic metastases arising from transgenic intraocular tumors in mice. Invest Ophthalmol Vis Sci. 1995;36(6):1067–75.

    CAS  PubMed  Google Scholar 

  63. Zhang Q, Yang H, Kang SJ, et al. In vivo high-frequency, contrast-enhanced ultrasonography of uveal melanoma in mice: imaging features and histopathologic correlations. Invest Ophthalmol Vis Sci. 2011;52(5):2662–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang H, Grossniklaus HE. Constitutive overexpression of pigment epithelium-derived factor inhibition of ocular melanoma growth and metastasis. Invest Ophthalmol Vis Sci. 2010;51(1):28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Logan PT, Fernandes BF, Di Cesare S, Marshall JC, Maloney SC, Burnier MN Jr. Single-cell tumor dormancy model of uveal melanoma. Clin Exp Metastasis. 2008;25(5):509–16.

    Article  PubMed  Google Scholar 

  66. Musi E, Ambrosini G, de Stanchina E, Schwartz GK. The phosphoinositide 3-kinase alpha selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells. Mol Cancer Ther. 2014;13(5):1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Folberg R, Leach L, Valyi-Nagy K, et al. Modeling the behavior of uveal melanoma in the liver. Invest Ophthalmol Vis Sci. 2007;48(7):2967–74.

    Article  PubMed  Google Scholar 

  68. Lafreniere R, Rosenberg SA. A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst. 1986;76(2):309–22.

    CAS  PubMed  Google Scholar 

  69. Li H, Alizadeh H, Niederkorn JY. Differential expression of chemokine receptors on uveal melanoma cells and their metastases. Invest Ophthalmol Vis Sci. 2008;49(2):636–43.

    Article  PubMed  Google Scholar 

  70. Dithmar S, Rusciano D, Grossniklaus HE. A new technique for implantation of tissue culture melanoma cells in a murine model of metastatic ocular melanoma. Melanoma Res. 2000;10(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  71. Liu LH, Albert DM, Dohlman HG, Chuo N. Metastasis in a rabbit choroidal melanoma model. Invest Ophthalmol Vis Sci. 1982;22(1):115–8.

    CAS  PubMed  Google Scholar 

  72. Notting IC, Buijs JT, Que I, et al. Whole-body bioluminescent imaging of human uveal melanoma in a new mouse model of local tumor growth and metastasis. Invest Ophthalmol Vis Sci. 2005;46(5):1581–7.

    Article  PubMed  Google Scholar 

  73. Yang H, Cao J, Grossniklaus HE. Uveal melanoma metastasis models. Ocul Oncol Pathol. 2015;1(3):151–60.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huynh K, Hoon DS. Liquid biopsies for assessing metastatic melanoma progression. Crit Rev Oncog. 2016;21(1–2):141–54.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Amirouchene-Angelozzi N, Schoumacher M, Stern MH, et al. Upcoming translational challenges for uveal melanoma. Br J Cancer. 2015;113(12):1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang SK, Hoon DS. Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol Oncol. 2016;10(3):450–63.

    Article  PubMed  CAS  Google Scholar 

  77. Tura A, Luke J, Merz H, et al. Identification of circulating melanoma cells in uveal melanoma patients by dual-marker immunoenrichment. Invest Ophthalmol Vis Sci. 2014;55(7):4395–404.

    Article  PubMed  Google Scholar 

  78. Mazzini C, Pinzani P, Salvianti F, et al. Circulating tumor cells detection and counting in uveal melanomas by a filtration-based method. Cancers (Basel). 2014;6(1):323–32.

    Article  CAS  Google Scholar 

  79. Charitoudis G, Schuster R, Joussen AM, Keilholz U, Bechrakis NE. Detection of tumour cells in the bloodstream of patients with uveal melanoma: influence of surgical manipulation on the dissemination of tumour cells in the bloodstream. Br J Ophthalmol. 2016;100(4):468–72.

    Article  PubMed  Google Scholar 

  80. Caivano A, Laurenzana I, De Luca L, et al. High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders. Tumour Biol. 2015;36(12):9739–52.

    Article  CAS  PubMed  Google Scholar 

  81. Ragusa M, Barbagallo C, Statello L, et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol Ther. 2015;16(9):1387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eldh M, Olofsson Bagge R, Lasser C, et al. MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma. BMC Cancer. 2014;14:962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Stroun M, Lyautey J, Lederrey C, Mulcahy HE, Anker P. Alu repeat sequences are present in increased proportions compared to a unique gene in plasma/serum DNA: evidence for a preferential release from viable cells? Ann N Y Acad Sci. 2001;945:258–64.

    Article  CAS  PubMed  Google Scholar 

  84. Bidard FC, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer. 2014;134(5):1207–13.

    Article  CAS  PubMed  Google Scholar 

  85. Journee-de Korver JG, Oosterhuis JA, Kakebeeke-Kemme HM, de Wolff-Rouendaal D. Transpupillary thermotherapy (TTT) by infrared irradiation of choroidal melanoma. Doc Ophthalmol. 1992;82(3):185–91.

    Article  CAS  PubMed  Google Scholar 

  86. Rem AI, Oosterhuis JA, Korver JG, van den Berg TJ. Transscleral laser thermotherapy of hamster Greene melanoma: inducing tumour necrosis without scleral damage. Melanoma Res. 2001;11(5):503–9.

    Article  CAS  PubMed  Google Scholar 

  87. Jaffe GJ, Mieler WF, Burke JM, Williams GA. Photoablation of ocular melanoma with a high-powered argon endolaser. Arch Ophthalmol. 1989;107(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  88. Rem AI, Oosterhuis JA, Journee-de Korver HG, de Wolff-Rouendaal D, Keunen JE. Transscleral thermotherapy: short- and long-term effects of transscleral conductive heating in rabbit eyes. Arch Ophthalmol. 2003;121(4):510–6.

    Article  PubMed  Google Scholar 

  89. Kines RC, Varsavsky I, Choudhary S, et al. An infrared dye-conjugated virus-like particle for the treatment of primary uveal melanoma. Mol Cancer Ther. 2018;17(2):565–74.

    Article  CAS  PubMed  Google Scholar 

  90. Diaz CE, Rusciano D, Dithmar S, Grossniklaus HE. B16LS9 melanoma cells spread to the liver from the murine ocular posterior compartment (PC). Curr Eye Res. 1999;18(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  91. Yang H, Dithmar S, Grossniklaus HE. Interferon alpha 2b decreases hepatic micrometastasis in a murine model of ocular melanoma by activation of intrinsic hepatic natural killer cells. Invest Ophthalmol Vis Sci. 2004;45(7):2056–64.

    Article  PubMed  Google Scholar 

  92. Yang W, Li H, Mayhew E, Mellon J, Chen PW, Niederkorn JY. NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. Invest Ophthalmol Vis Sci. 2011;52(6):3094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel N. Burnier Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burnier, J.V., Mastromonaco, C., Lasiste, J.M., Burnier, M.N. (2019). Animal Models in Uveal Melanoma. In: Damato, B., Singh, A. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-17879-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17879-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17878-9

  • Online ISBN: 978-3-030-17879-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics