Abstract
Almost 50% of uveal melanoma (UM) patients develop metastatic disease, despite successful ocular treatment. Metastases usually involve the liver and only rarely respond to treatment so that most patients die within a year of onset of symptoms. There are hopes that systemic adjuvant therapy may delay or prevent metastatic disease. This requires targeting of high-risk patients, according to anatomic, histologic, and genetic predictors. Metastatic disease occurs almost exclusively in patients whose tumor shows genetic aberrations such as chromosome 3 loss, chromosome 8q gains, and BAP1 mutation. The detection of lethal genetic aberrations has become more sensitive with the development of methods such as comparative genomic hybridization, microsatellite analysis, multiplex ligation-dependent probe amplification, single-nucleotide polymorphisms, gene expression profiling, next-generation sequencing, and immunohistochemical analysis of nuclear BAP1 expression. The time from ocular treatment to the onset of metastatic disease tends to be shorter in patients with a larger, more extensive ocular tumor and a higher grade of malignancy as evidenced by epithelioid cytomorphology and higher mitotic count. Ideally, prognostication is performed by multivariable analysis using a tool such as the Liverpool Uveal Melanoma Prognosticator Online (LUMPO). Accurate prognostication enhances quality of life, especially in patients with a good prognosis. It also allows targeting of systemic surveillance and systemic adjuvant therapy in high-risk patients and enhances opportunities for research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton Lecture. Eye. 2012;26(9):1157–72.
Frenkel S, Nir I, Hendler K, et al. Long-term survival of uveal melanoma patients after surgery for liver metastases. Br J Ophthalmol. 2009;93(8):1042–6.
Mariani P, Servois V, Piperno-Neumann S. Therapeutic options in metastatic uveal melanoma. current concepts in uveal melanoma. Basel: KARGER; 2011.
Kujala E, Ma¨kitie T, Kivela¨ T. Very long-term prognosis of patients with malignant uveal melanoma. Invest Opthalmol Visual Science. 2003;44(11):4651.
Whitehead J, Tishkovskaya S, O’Connor J, et al. Devising two-stage and multistage phase II studies on systemic adjuvant therapy for uveal melanoma. Invest Opthalmol Vis Sci. 2012;53(8):4986.
Damato B, Duke C, Coupland SE, et al. Cytogenetics of uveal melanoma. Ophthalmology. 2007;114(10):1925–31. e1.
Damato BE, Coupland SE. Differences in uveal melanomas between men and women from the British Isles. Eye. 2011;26(2):292–9.
Damato B, Eleuteri A, Taktak AFG, et al. Estimating prognosis for survival after treatment of choroidal melanoma. Prog Retin Eye Res. 2011;30(5):285–95.
Khan S. Clinical and pathologic characteristics of biopsy-proven Iris melanoma. Arch Ophthalmol. 2012;130(1):57.
Scholz SL, Moller I, Reis H, et al. Frequent GNAQ, GNA11, and EIF1AX mutations in Iris melanoma. Invest Ophthalmol Vis Sci. 2017;58(9):3464–70.
Harbour JW, Wilson D, Finger PT, et al. Gene expressing profiling of iris melanomas. Ophthalmology. 2013;120(1):213, e1-3.
Krishna Y, Kalirai H, Thornton S, et al. Genetic findings in treatment-naive and proton-beam-radiated iris melanomas. Br J Ophthalmol. 2016;100(7):1012–6.
Kivelä T, Kujala E. Prognostication in eye cancer: the latest tumor, node, metastasis classification and beyond. Eye. 2012;27(2):243–52.
Dogrusoz M, Bagger M, van Duinen SG, et al. The prognostic value of AJCC staging in uveal melanoma is enhanced by adding chromosome 3 and 8q status. Invest Ophthalmol Vis Sci. 2017;58(2):833–42.
Eleuteri A, Damato B, Coupland SE, et al. Enhancing survival prognostication in patients with choroidal melanoma by integrating pathologic, clinical and genetic predictors of metastasis. Int J Biomed Eng Technol. 2012;8(1):18.
Prescher G, Bornfeld N, Becher R. Nonrandom chromosomal abnormalities in primary uveal melanoma. JNCI: J Nat Cancer Inst. 1990;82(22):1765–9.
Prescher G, Speicher MR, du Manoir S, et al. Comparative genomic hybridization of uveal melanoma. Cancer Genet Cytogenet. 1994;77(2):163.
Sisley K, Cottam DW, Rennie IG, et al. Non-random abnormalities of chromosomes 3, 6, and 8 associated with posterior uveal melanoma. Genes Chromosom Cancer. 1992;5(3):197–200.
White VA, Chambers JD, Courtright PD, et al. Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer. 1998;83(2):354–9.
Damato B, Dopierala JA, Coupland SE. Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res. 2010;16(24):6083–92.
Damato B, Dopierala J, Klaasen A, et al. Multiplex ligation-dependent probe amplification of uveal melanoma: correlation with metastatic death. Invest Opthalmol Vis Sci. 2009;50(7):3048.
Coupland SE, Kalirai H, Baudo M, et al. Quality assessment of multiplex ligation-dependent probe amplification (mlpa) in uveal melanoma by comparison witha array comparative genomic hybridization (acgh) and microsatellite analysis (msa). Invest Ophthalmol Vis Sci. 2012;53(14):5252.
Hömig-Hölzel C, Savola S. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol. 2012;21(4):189–206.
Schwab CJ, Jones LR, Morrison H, et al. Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosom Cancer. 2010;49(12):1104–13.
Sisley K, Nichols C, Parsons MA, et al. Clinical applications of chromosome analysis, from fine needle aspiration biopsies, of posterior uveal melanomas. Eye. 1998;12(2):203–7.
Bonaldi L, Midena E, Filippi B, et al. FISH analysis of chromosomes 3 and 6 on fine needle aspiration biopsy samples identifies distinct subgroups of uveal melanomas. J Cancer Res Clin Oncol. 2008;134(10):1123–7.
Midena E, Bonaldi L, Parrozzani R, et al. In vivo monosomy 3 detection of posterior uveal melanoma: 3-year follow-up. Graefes Arch Clin Exp Ophthalmol. 2007;246(4):609–14.
Singh AD, Aronow ME, Sun Y, et al. Chromosome 3 status in uveal melanoma: a comparison of fluorescence in situ hybridization and single-nucleotide polymorphism array. Invest Opthalmol Vis Sci. 2012;53(7):3331.
Gordon KB, Thompson CT, Char DH, et al. Comparative genomic hybridization in the detection of DNA copy number abnormalities in uveal melanoma. Cancer Res. 1994;54(17):4764–8.
Speicher MR, Prescher G, du Manoir S, et al. Chromosomal gains and losses in uveal melanomas detected by comparative genomic hybridization. Cancer Res. 1994;54(14):3817–23.
Ghazvini S, Char DH, Kroll S, et al. Comparative genomic hybridization analysis of archival formalin-fixed paraffin-embedded uveal melanomas. Cancer Genet Cytogenet. 1996;90(2):95–101.
Aalto Y, Eriksson L, Seregard S, et al. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42(2):313–7.
Hughes S, Damato BE, Giddings I, et al. Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3. Br J Cancer. 2005;93(10):1191–6.
Kilic E, van Gils W, Lodder E, et al. Clinical and cytogenetic analyses in uveal melanoma. Invest Opthalmol Vis Sci. 2006;47(9):3703.
Ehlers JP, Worley L, Onken MD, et al. Integrative genomic analysis of aneuploidy in uveal melanoma. Clin Cancer Res. 2008;14(1):115–22.
Petrausch U, Martus P, Tönnies H, et al. Significance of gene expression analysis in uveal melanoma in comparison to standard risk factors for risk assessment of subsequent metastases. Eye. 2007;22(8):997–1007.
Vaarwater J, van den Bosch T, Mensink HW, et al. Multiplex ligation-dependent probe amplification equals fluorescence in-situ hybridization for the identification of patients at risk for metastatic disease in uveal melanoma. Melanoma Res. 2012;22(1):30–7.
Shields CL, Ganguly A, Bianciotto CG, et al. Prognosis of uveal melanoma in 500 cases using genetic testing of fine-needle aspiration biopsy specimens. Ophthalmology. 2011;118(2):396–401.
Thomas S, Pütter C, Weber S, et al. Prognostic significance of chromosome 3 alterations determined by microsatellite analysis in uveal melanoma: a long-term follow-up study. Br J Cancer. 2012;106(6):1171–6.
Onken MD, Worley LA, Person E, et al. Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin Cancer Res. 2007;13(10):2923–7.
Dogrusoz M, Jager MJ. Genetic prognostication in uveal melanoma. Acta Ophthalmol. 2018;96(4):331–47.
Onken MD, Worley LA, Tuscan MD, et al. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. J Mol Diagn. 2010;12(4):461–8.
Onken MD, Worley LA, Char DH, et al. Collaborative ocular oncology group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology. 2012;119(8):1596–603.
Field MG, Decatur CL, Kurtenbach S, et al. PRAME as an independent biomarker for metastasis in uveal melanoma. Clin Cancer Res. 2016;22(5):1234–42.
Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330(6009):1410–3.
Koopmans AE, Verdijk RM, Brouwer RW, et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol. 2014;27(10):1321–30.
Shah AA, Bourne TD, Murali R. BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology. 2013;45(7):651–6.
Kalirai H, Dodson A, Faqir S, et al. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer. 2014;111(7):1373–80.
van de Nes JA, Nelles J, Kreis S, et al. Comparing the prognostic value of BAP1 mutation pattern, chromosome 3 status, and BAP1 immunohistochemistry in uveal melanoma. Am J Surg Pathol. 2016;40(6):796–805.
Farquhar N, Thornton S, Coupland SE, et al. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. J Pathol Clin Res. 2018;4(1):26–38.
Martin M, Masshofer L, Temming P, et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet. 2013;45(8):933–6.
Royer-Bertrand B, Torsello M, Rimoldi D, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am J Hum Genet. 2016;99(5):1190–8.
Robertson AG, Shih J, Yau C, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15.
Reiman A, Kikuchi H, Scocchia D, et al. Validation of an NGS mutation detection panel for melanoma. BMC Cancer. 2017;17(1):150.
Smit KN, van Poppelen NM, Vaarwater J, et al. Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod Pathol. 2018;31(5):763–71.
Bellerive C, Binkley E, Singh AD. Class 2 gene expression profile of a hemorrhagic pigment epithelial detachment misdiagnosed as melanoma. Ophthalmol Retina. 2019;3(5):453–5.
Klufas MA, Itty S, McCannel CA, et al. Variable results for uveal melanoma-specific gene expression profile prognostic test in choroidal metastasis. JAMA Ophthalmol. 2015;133(9):1073–6.
Klufas MA, Richter E, Itty S, et al. Comparison of gene expression profiling and chromosome 3 analysis by fluorescent in situ hybridization and multiplex ligation probe amplification in fine-needle aspiration biopsy specimens of uveal melanoma. Ocul Oncol Pathol. 2017;4(1):16–20.
Bellerive C, Grossniklaus HE, Singh AD. Prognostication for uveal melanoma: are two tests better than one? Ocul Oncol Pathol. 2017;3(4):301–3.
Shao YF, Echegaray JJ, Singh N, et al. Variability of bad prognosis in uveal melanoma. Ophthalmol Retina. 2019;3(2):186–93.
Taktak AFG, Fisher AC, Damato BE. Modelling survival after treatment of intraocular melanoma using artificial neural networks and Bayes theorem. Phys Med Biol. 2003;49(1):87–98.
Eleuteri A, Aung MSH, Taktak AFG, et al. Continuous and discrete time survival analysis: neural network approaches. 2007 29th annual international conference of the IEEE engineering in medicine and biology society: IEEE; 2007.
Damato B, Eleuteri A, Fisher AC, et al. Artificial neural networks estimating survival probability after treatment of choroidal melanoma. Ophthalmology. 2008;115(9):1598–607.
Harrell FE. Parametric survival models. Regression modeling strategies: Springer International Publishing; 2015.
Eleuteri A, Taktak AFG, Coupland SE, et al. Prognostication of metastatic death in uveal melanoma patients: a Markov multi-state model. Comput Biol Med. 2018;102:151–6.
DeParis SW, Taktak A, Eleuteri A, et al. External validation of the liverpool uveal melanoma prognosticator online. Invest Ophthalmol Vis Sci. 2016;57(14):6116–22.
Vaquero-Garcia J, Lalonde E, Ewens KG, et al. PRiMeUM: a model for predicting risk of metastasis in uveal melanoma. Invest Ophthalmol Vis Sci. 2017;58(10):4096–105.
Walter SD, Chao DL, Feuer W, et al. Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmol. 2016;134(7):734–40.
Correa ZM, Augsburger JJ. Independent prognostic significance of gene expression profile class and largest basal diameter of posterior uveal melanomas. Am J Ophthalmol. 2016;162:20–7. e1.
Demirci H, Niziol LM, Ozkurt Z, et al. Do largest basal tumor diameter and the American joint commission cancer staging influence prognostication by gene expression profiling in choroidal melanoma? Am J Ophthalmol. 2018;195:83–92.
Cook SA, Damato B, Marshall E, et al. Psychological aspects of cytogenetic testing of uveal melanoma: preliminary findings and directions for future research. Eye. 2008;23(3):581–5.
Schuermeyer I, Maican A, Sharp R, et al. Depression, anxiety, and regret before and after testing to estimate uveal melanoma prognosis. JAMA Ophthalmol. 2016;134(1):51–6.
Singh AD. Prognostication of uveal melanoma: a work in progress. JAMA Ophthalmol. 2016;134(7):740–1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Coupland, S.E., Taktak, A., Eleuteri, A., Kalirai, H., Thornton, S., Damato, B.E. (2019). Uveal Melanoma: Prognostication Methods. In: Damato, B., Singh, A. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-17879-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-17879-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17878-9
Online ISBN: 978-3-030-17879-6
eBook Packages: MedicineMedicine (R0)