Advertisement

Quantitative Comparison of White Matter Segmentation for Brain MR Images

  • Xianping LiEmail author
  • Jorgue Martinez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 943)

Abstract

The volume of white matter in brain MR image is important for medical diagnosis, therefore, it is critical to obtain an accurate segmentation of the white matter. We compare quantitatively the up-to-date versions of three software packages: SPM, FSL, and FreeSurfer, for brain MR image segmentation, and then select the package that performs the best for white matter segmentation. Dice index (DSC), Hausdorff distance (HD), and modified Hausdorff distance (MHD) are chosen as the metrics for comparison. A new computational method is also proposed to calculate HD and MHD efficiently.

Keywords

Image segmentation Brain MRI White matter SPM FLS FreeSurfer Dice index Hausdorff distance 

References

  1. 1.
    The FIL Methods Group: Statistical Parametric Mapping (SPM). http://www.fil.ion.ucl.ac.uk/spm/. Accessed 15 Sept 2017
  2. 2.
    Analysis Group: FMRIB Software Library (FSL). http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/. Accessed 15 Sept 2017
  3. 3.
    Laboratory for Computational Neuroimaging: FreeSurfer. http://freesurfer.net. Accessed 15 Sept 2017
  4. 4.
    Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., Lundervold, A.: Evaluation of automated brain MR image segmentation and volumetry methods. Hum. Brain Mapp. 30, 1310–1327 (2009)CrossRefGoogle Scholar
  5. 5.
    Kazemi, K., Noorizadeh, N.: Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J. Biomed. Phys. Eng. 4(1), 13 (2014)Google Scholar
  6. 6.
    Kwan, R.K.-S., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)CrossRefGoogle Scholar
  7. 7.
    BrainWeb: Simulated Brain Database: McConnell Brain Imaging Centre. http://www.bic.mni.mcgill.ca/brainweb/. Accessed 15 Sept 2017
  8. 8.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  9. 9.
    Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566-568 (1994)Google Scholar
  10. 10.
    Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 2015, 15–29 (2015)Google Scholar
  11. 11.
    Zou, K.H., Wells, W.M., Kikinis, R., Warfield, S.K.: Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med. 23(8), 1259–1282 (2004)CrossRefGoogle Scholar
  12. 12.
    Babalola, K.O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T.F., Jenkinson, M., Rueckert, D.: Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. In: Medical Image Computing and Computer-Assisted Intervention, 11(Pt 1), pp. 409–416 (2008)CrossRefGoogle Scholar
  13. 13.
    Cardenes, R., de Luis-Garcia, R., Bach-Cuadra, M.A.: A multidimensional segmentation evaluation for medical image data. Comput. Methods Programs Biomed. 96(2), 108–124 (2009)CrossRefGoogle Scholar
  14. 14.
    Morain-Nicolier, F., Lebonvallet, S., Baudrier, E., Ruan, S.: Hausdorff distance based 3D quantification of brain tumor evolution from MRI images. In: Conference Proceedings of IEEE Engineering in Medicine and Biology Society, vol. 2007, pp. 5597–5600 (2007)Google Scholar
  15. 15.
    Narendran, P., Narendira Kumar, V.K., Somasundaram, K.: 3D brain tumors and internal brain structures segmentation in MR images. Int. J. Image Graph. Sig. Process. 2012(1), 35–43 (2012)Google Scholar
  16. 16.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2), 114–141 (2003)CrossRefGoogle Scholar
  17. 17.
    Zhao, C., Shi, W., Deng, Y.: A new Hausdorff distance for image matching. Pattern Recognit. Lett. 26, 581–586 (2005)CrossRefGoogle Scholar
  18. 18.
    Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2153–2163 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Missouri-Kansas CityKansas CityUSA

Personalised recommendations