Automatic Object Segmentation Based on GrabCut

  • Feng JiangEmail author
  • Yan Pang
  • ThienNgo N. Lee
  • Chao Liu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 943)


Object segmentation is used in multiple image processing applications. It is generally difficult to perform the object segmentation fully automatically. Most object segmentation schemes are developed based on prior information, training process, existing annotation, special mechanical settings or the human visual system modeling. We proposed a fully automatic segmentation method not relying on any training/learning process, existing annotation, special settings or the human visual system. The automatic object segmentation is accomplished by an objective object weight detection and modified GrabCut segmentation. The segmentation approach we propose is developed only based on the inherent image features. It is independent with various datasets and could be applied to different scenarios. The segmentation result is illustrated by testing a large dataset.


Segmentation Saliency GrabCut Graph cuts 


  1. 1.
    Kohli, P., Torr, P.H.: Dynamic graph cuts for efficient inference in markov random fields. IEEE Trans. pattern Anal. Mach. Intel. 29(12), 2079–2088 (2007)CrossRefGoogle Scholar
  2. 2.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. In: ACM Transaction Graphics (TOG), vol. 23, ACM, pp. 309–314 (2004)Google Scholar
  3. 3.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar
  4. 4.
    Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: 2001 Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)Google Scholar
  5. 5.
    Chuang, Y.-Y., Curless, B., Salesin, D.H., Szeliski, R.: A Bayesian approach to digital matting. In: 2001 Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, p. II. IEEE (2001)Google Scholar
  6. 6.
    Mortensen, E.N., Barrett, W.A.: Intelligent scissors for image composition. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 191–198. ACM (1995)Google Scholar
  7. 7.
    Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3241–3248. IEEE (2010)Google Scholar
  8. 8.
    Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE Trans. Pattern Anal. Mach. Intel. 34(7), 1312–1328 (2012)CrossRefGoogle Scholar
  9. 9.
    Won, C.S., Pyun, K., Gray, R.M.: Automatic object segmentation in images with low depth of field. In: 2002 Proceedings 2002 International Conference on Image Processing 2002, vol. 3, pp. 805–808. IEEE (2002)Google Scholar
  10. 10.
    Campbell, N.D., Vogiatzis, G., Hernández, C., Cipolla, R.: Automatic 3D object segmentation in multiple views using volumetric graph-cuts. Image Vis. Comput. 28(1), 14–25 (2010)CrossRefGoogle Scholar
  11. 11.
    Jung, C., Kim, C.: A unified spectral-domain approach for saliency detection and its application to automatic object segmentation. IEEE Trans. Image Process. 21(3), 1272–1283 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fu, Y., Cheng, J., Li, Z., Lu, H.: Saliency cuts: an automatic approach to object segmentation. In: 2008 19th International Conference on Pattern Recognition ICPR 2008, pp. 1–4. IEEE (2008)Google Scholar
  13. 13.
    Harel, J., Koch, C., Perona, P., et al.: Graph-based visual saliency. In: NIPS, vol. 1, p. 5 (2006)Google Scholar
  14. 14.
    Schauerte, B., Stiefelhagen, R.: Quaternion-based spectral saliency detection for eye fixation prediction. In: Computer Vision–ECCV 2012, pp. 116–129. Springer (2012)Google Scholar
  15. 15.
    Schauerte, B., Stiefelhagen, R.: Predicting human gaze using quaternion DCT image signature saliency and face detection. In: 2012 IEEE Workshop on Applications of Computer Vision (WACV), pp. 137–144. IEEE (2012)Google Scholar
  16. 16.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2007)Google Scholar
  17. 17.
    Jiang, F., King, B.: A novel quality assessment for visual secret sharing schemes. EURASIP J. Inf. Secur. 2017(1), 1 (2017)CrossRefGoogle Scholar
  18. 18.
    Blumenthal, I.: Grab cut (2012).
  19. 19.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Computer Vision-ECCV, 2004, pp. 428–441 (2004)Google Scholar
  20. 20.
    Kim, J., Parra, A., Li, H., Delp, E.J.: Efficient graph-cut tattoo segmentation. In: SPIE/IS&T Electronic Imaging, International Society for Optics and Photonics, pp. 94100H–94100H (2015)Google Scholar
  21. 21.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Computer vision and Image understanding 106(1), 59–70 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Feng Jiang
    • 1
    Email author
  • Yan Pang
    • 2
  • ThienNgo N. Lee
    • 1
    • 2
  • Chao Liu
    • 1
    • 2
  1. 1.Metropolitan State University DenverDenverUSA
  2. 2.University of Colorado DenverDenverUSA

Personalised recommendations