License Plate Character Recognition Using Binarization and Convolutional Neural Networks

  • Sandeep AngaraEmail author
  • Melvin RobinsonEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 943)


The goal of an Automatic License Plate Recognition (ALPR) system is to capture and recognize a vehicle license plate. This is an important computer vision problem and has number of application domains: law enforcement, public safety agencies, and toll gate systems to name a few. At the heart of ALPR systems is the character recognition system as it is a unique identifier for any given vehicle. We construct an ALPR character recognition system by creating a dataset to simulate a captured license plate image, applying multiple binarization techniques to segment the characters from state, from the plate and from each other and finally using this dataset to train a convolutional neural network.


Convolutional neural networks License plate recognition Deep learning Binarization 


  1. 1.
    Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 3, pp. 958–962 (2003)Google Scholar
  2. 2.
    Weickert, J.: A review of nonlinear diffusion filtering. In: Scale-Space Theory in Computer Vision, pp. 1–28. Springer (1997)Google Scholar
  3. 3.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  4. 4.
    Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): a state-of-the-art review. IEEE Trans. Circ. Syst. Video Technol. 23(2), 311–325 (2013)CrossRefGoogle Scholar
  5. 5.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  6. 6.
    Duffner, S.: Face image analysis with convolutional neural networks (2008)Google Scholar
  7. 7.
    Zhao, Z., Yang, S., Ma, X.: Chinese license plate recognition using a convolutional neural network. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008, vol. 1, pp. 27–30. IEEE (2008)Google Scholar
  8. 8.
    Chen, Y.-N., Han, C.-C., Wang, C.-T., Jeng, B.-S., Fan, K.-C.: The application of a convolution neural network on face and license plate detection. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 552–555. IEEE (2006)Google Scholar
  9. 9.
    Han, C.-C., Hsieh, C.-T., Chen, Y.-N., Ho, G.-F., Fan, K.-C., Tsai, C.-L.: License plate detection and recognition using a dual-camera module in a large space. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 307–312. IEEE (2007)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  12. 12.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). Similarity Matching in Computer Vision and Multimedia.
  13. 13.
    Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
  14. 14.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Texas at TylerTylerUSA

Personalised recommendations