Skip to main content

Modeling and Simulation of PV Panel Under Different Internal and Environmental Conditions with Non-constant Load

  • Conference paper
  • First Online:
Technological Innovation for Industry and Service Systems (DoCEIS 2019)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 553))

Included in the following conference series:

Abstract

This paper focuses on PV power conversion under different internal and environmental conditions with non-constant load, connected to a smart grid system. Due to environmental conditions, the PV system is a non-linear system and difficult to predict the power conversion. In the aspect of internal variables, it includes the five parameters of the single diode solar cell model identify their sensitivity through error function. It also identifies the relation between environmental conditions, mainly: irradiance, temperature and wind speed. The modeling and computational simulation with laboratory work identify the effects of internal and environmental effect on the system. The model gives details about the sensitivity of each environmental condition using error function. The work includes the decrease of energy conversion by the solar panel as a function of time due to the shadow effect that affects its performance. Besides these, a smart system is introduced as a DAQ system in laboratory environment to get in real time the power conversion value with the P-V and I-V characteristics of the PV panel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rashel, M.R.: Modeling photovoltaic panels under variable internal and environmental conditions with non-constant load. PhD Thesis, Universidade de Évora (2018)

    Google Scholar 

  2. Rashel, M.R., Rifath, J., Gonçalves, T., Tlemçani, M., Melicio, R.: Sensitivity analysis through error function of Crystalline-Si photovoltaic cell model integrated in a smart grid. Int. J. Renew. Energy Res. 7(4), 1926–1933 (2017)

    Google Scholar 

  3. Rashel, M.R., Albino, A., Rifath, J., Gonçalves, T., Tlemcani, M.: Matlab simulink modeling of photovoltaic cells for understanding shadow effect. In: Proceedings of IEEE International Conference on Renewable Energy Research and Applications, pp. 747–750 (2016)

    Google Scholar 

  4. Clean Energy Reviews. https://www.cleanenergyreviews.info/blog/best-quality-solar-panels-manufacturers. Accessed 12 Oct 2018

  5. Alte Store. https://www.altestore.com/howto/solar-insolation-map-world-a43/. Accessed 07 Sept 2017

  6. Chen, C.J.: Physics of Solar Energy. Wiley, Hoboken (2011)

    Book  Google Scholar 

  7. Batista, N.C., Melicio, R., Mendes, V.M.F.: Services enabler architecture for smart grid and smart living services providers under industry 4.0. Energy Build. 141, 16–27 (2017)

    Article  Google Scholar 

  8. Batista, N.C., Melicio, R., Matias, J.C.O., Catalão, J.P.S.: Zigbee standard in the creation of wireless networks for advanced metering infrastructures. In: Proceedings 16th IEEE MELECON, pp. 220–223 (2012)

    Google Scholar 

  9. Gomes, I.L.R., Melicio, R., Mendes, V.M.F., Pousinho, H.M.I.: Decision making for sustainable aggregation of clean energy in day-ahead market: uncertainty and risk. Renew. Energy 133, 602–702 (2019)

    Article  Google Scholar 

  10. Transverter. http://www.transverter.com/smart.html. Accessed 13 Mar 2017

  11. Shaukat, N., et al.: A survey on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev. 81, 1329–1349 (2018)

    Article  Google Scholar 

  12. Paris Climate Change Conference: The global standard of globalization is not limited to the limitations of the system, XXI 2°C (2015)

    Google Scholar 

  13. Bozkurt, I.: Energy resources and their effects on environment. WSEAS Trans. Environ. Dev. 6(5), 327–334 (2010)

    Google Scholar 

  14. Omer, A.M.: Energy and environment: applications and sustainable development. Br. J. Environ. Clim. Change 1(4), 118–158 (2011)

    Article  Google Scholar 

  15. Mitoula, R., Abeliotis, K., Vamvakari, M., Gratsani, A.: Sustainable regional development through the use of photovoltaic (PV) systems: the case of the Thessaly region. In: Proceedings of World Renewable Energy Congress, pp. 8–13 (2011)

    Google Scholar 

  16. Phuangpornpitaka, N., Tia, S.: Opportunities and challenges of integrating renewable energy in smart grid system. Energy Procedia 34, 282–290 (2013)

    Article  Google Scholar 

  17. Mekkaoui, A., Laouer, M., Mimoun, Y.: Modeling and simulation for smart grid integration of solar/wind energy. Leonardo J. Sci. 30, 31–46 (2017)

    Google Scholar 

  18. Shafiullah, G.M., Amanullah, M.T.O., Ali, A.B.M.S., Wolfs, P.: Smart grid for a sustainable future. Smart Grid Renew. Energy 4, 23–34 (2013)

    Article  Google Scholar 

  19. Fialho, L.A.P., Melicio, R., Mendes, V.M.F., Viana, S., Rodrigues, C., Estanqueiro, A.: A simulation of integrated photovoltaic conversion into electric grid. Sol. Energy 110, 578–594 (2014)

    Article  Google Scholar 

  20. Fialho, L.A.P., Melicio, R., Mendes, V.M.F., Rodrigues, L., Viana, S., Estanqueiro, A.: Simulation of a-Si PV system linked to the grid by DC-DC boost and two-level converter. In: Proceedings of 16th International Power Electronics and Motion Control Conference and Exposition, pp. 934–938 (2014)

    Google Scholar 

  21. Fialho, L., Melício, R., Mendes, V.M.F., Collares-Pereira, M.: Simulation of a-Si PV system linked to the grid by DC boost and three-level inverter under cloud scope. In: Camarinha-Matos, Luis M., Baldissera, Thais A., Di Orio, G., Marques, F. (eds.) DoCEIS 2015. IAICT, vol. 450, pp. 423–430. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16766-4_45

    Chapter  Google Scholar 

  22. Fialho, L.A.P., Melicio, R., Mendes, V.M.F., Estanqueiro, A.: Simulation of a-Si PV system grid connected by boost and inverter. Int. J. Renew. Energy Res. 5(2), 443–451 (2015)

    Google Scholar 

  23. Fialho, L.A.P., Melicio, R., Mendes, V.M.F.: Poly-Si PV system grid connected and fuzzy controlled. In: Proceedings 16th IEEE International Conference on Computer as a Tool, pp. 1–6 (2015)

    Google Scholar 

  24. Fialho, L.A.P., Melicio, R., Mendes, V.M.F., Estanqueiro, A., Pereira, M.I.C.: PV systems linked to the grid: parameter identification with a heuristic procedure. Sustain. Energy Technol. Assess. 10, 29–39 (2015)

    Google Scholar 

  25. Tayyan, A.A.E.: PV system behavior based on datasheet. J. Electron Devices 9, 335–341 (2011)

    Google Scholar 

  26. Tayyan, A.A.E.: A simple method to extract the parameters of the single-diode model of a PV system. Turk. J. Phys. 37, 121–131 (2013)

    Google Scholar 

  27. Aoun, N., Chenni, R., Nahman, B., Bouchouicha, K.: Evaluation and validation of equivalent five-Parameter model performance for photovoltaic panels using only reference data. Energy Power Eng. 6(9), 235–245 (2014)

    Article  Google Scholar 

  28. Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S.: Investigation of wind speed cooling effect on PV panels in windy locations. Renew. Energy 90, 283–290 (2016)

    Article  Google Scholar 

  29. Dubey, S., Sarvaiya, J.N., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world: a review. Energy Procedia 33, 311–321 (2013)

    Article  Google Scholar 

  30. Bhattacharya, T., Chakraborty, A.K., Pal, K.: Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India. J. Solar Energy 2014, 1–5 (2014)

    Article  Google Scholar 

  31. Zerhouni, Z.F., Zerhouni, M.H., Zegrar, M., Benmessaoud, M.T., Stambouli, A.B., Midoun, A.: Proposed methods to increase the output efficiency of a photovoltaic (PV) system. Acta Polytech. Hung. 7(2), 55–70 (2010)

    Google Scholar 

  32. Mohamed, A.O., Hasan, A.: Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment. J. Basic Appl. Sci. Res. 2(11), 11030–11036 (2012)

    Google Scholar 

  33. Piazza, M.C.D., Vitale, G.: Photovoltaic field emulation including dynamic and partial shadow conditions. Appl. Energy 87, 814–823 (2010)

    Article  Google Scholar 

  34. Wang, J., Gong, H., Zou, Z.: Modeling of dust deposition affecting transmittance of PV modules. J. Clean Energy Technol. 5(3), 217–221 (2017)

    Article  Google Scholar 

  35. Rashel, M.R., Gonçalves, T., Tlemçani, M., Melicio, R.: Photovoltaic cell performance analysis under different ambient temperature and wind speed for sustainable energy. Vietnam J. Sci. 3(1), 1–16 (2017)

    Google Scholar 

  36. Rashel, M.R., Albino, A., Gonçalves, T., Tlemçani, M.: Sensitivity analysis of environmental and internal parameters of a photovoltaic cell. In: Proceedings of Energy for Sustainability International Conference - Designing Cities & Communities for the Future, Madeira (2017)

    Google Scholar 

  37. Rashel, M.R., Ahmed, T., Gonçalves, T., Tlemcani, M., Melicio, R.: Analysis of different types of obstacles for PV panel. In: Eradication Poverty Through Energy Innovation Workshop, Arizona State University (2018)

    Google Scholar 

  38. International Energy Agency: Energy and Climate Change (2015)

    Google Scholar 

  39. Rashel, M.R., Ahmed, T., Goncalves, T., Tlemcani, M., Melicio, R.: Analysis of environmental parameters sensitivity to improve modeling of a c-Si panel. Sens. Lett. 16(3), 176–181 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work is funded by: European Union through the European Regional Development Fund, included in the COMPETE 2020 (Operational Program Competitiveness and Internationalization) through the ICT project (UID/GEO/04683/2013) with the reference POCI010145FEDER007690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Melicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rashel, M.R., Melicio, R., Tlemcani, M., Goncalves, T. (2019). Modeling and Simulation of PV Panel Under Different Internal and Environmental Conditions with Non-constant Load. In: Camarinha-Matos, L., Almeida, R., Oliveira, J. (eds) Technological Innovation for Industry and Service Systems. DoCEIS 2019. IFIP Advances in Information and Communication Technology, vol 553. Springer, Cham. https://doi.org/10.1007/978-3-030-17771-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17771-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17770-6

  • Online ISBN: 978-3-030-17771-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics