Skip to main content

Structure, Morphology, and Spectroscopy Studies of La1−xRExVO4 Nanoparticles Synthesized by Various Methods

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Abstract

The La1−xEuxVO4 (0 ≤ x, y ≤ 0.3) and La1−xyEuyCaxVO4 (0 ≤ x, y ≤ 0.2) nanoparticles were synthesized by various methods and investigated. Phase composition of the sample depends on the x, y values. The La1-xEuxVO4 can be crystallized in monoclinic structure up to x = 0.1 or x = 0.05 depending on the method of synthesis. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1−xyEuyCaxVO4 solid solutions leads to the change of the crystal structure and subsequently stabilization of the tetragonal phase takes place. The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of all the La1−xEuxVO4 and La1−xyEuyCaxVO4 samples consists of narrow spectral lines in the 550 – 730 nm spectral range. The lines are caused by the 5D07FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases intensity of the Eu3+ ions luminescence. The structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1−xyEuyCaxVO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies. It is established that Ca-induced defects are also responsible for additional excitation band near 400 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IR:

Infra Red

PL:

Photo Luminescence

RE:

Rare Earth

SEM:

Scanning Electron Microscopy

UV:

Ultra Violet

XRD:

X-Rays Diffraction

References

  1. Palilla FC, Levine AK, Rinkevics M (1965) Rare earth activated phosphors based on yttrium orthovanadate and related compounds. J Electrochem Soc 112(8):776

    Article  Google Scholar 

  2. Blasse G, Bril A (1969) Luminescence of phosphors based on host lattices ABO4 (A is Sc, In; B is P, V, Nb). J Chem Phys 50:2974

    Article  ADS  Google Scholar 

  3. Palilla FC, Levine AK (1966) YVO4:Eu: a highly efficient, red-emitting phosphor for high pressure mercury lamps. Appl Opt 5:1467–1468

    Article  ADS  Google Scholar 

  4. Panayiotakis G, Cavouras D, Kandarakis I, Nomicos C (1996) A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4: Eu) screens for medical imaging applications. Appl Phys A Mater Sci Process 62(5):483–486

    Article  ADS  Google Scholar 

  5. Krumpel AH, van der Kolk E, Cavalli E, Boutinaud P, Bettinelli M, Dorenbos P (2009) Lanthanide 4f-level location in AVO4:Ln3+ (A = La, Gd, Lu) crystals. J Phys Condens Matter 21:115503–115508

    Article  ADS  Google Scholar 

  6. Panchal V, Errandonea D, Segura A, Rodríguez-Hernandez P, Muñoz A, Lopez-Moreno S, Bettinelli M (2011) The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution. J Appl Phys 110:043723

    Article  ADS  Google Scholar 

  7. Kang JH, Im WB, Lee DC, Kim JY, Jeon DY, Kang YC, Jung KY (2005) Correlation of photoluminescence of (Y,Ln)VO4:Eu3+ (Ln = Gd and La) phosphors with their crystal structures. Solid State Commun 133:651–656

    Article  ADS  Google Scholar 

  8. Wang Q, Zhang Z, Zheng Y, Cai W, Yifei Y (2012) Multiple irradiation triggered the formation of luminescent LaVO4: Ln3+ nanorods and in cellulose gels. CrystEngComm 14:4786

    Article  Google Scholar 

  9. Xu Z, Li C, Hou Z, Peng C, Lin J (2011) Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano−/microcrystals via hydrothermal process. CrystEngComm 13:474–482

    Article  Google Scholar 

  10. Li K, Van Deun R (2018) Eu3+ /Sm3+ −doped Na2BiMg2(VO4)3 from substitution of Ca2+ by Na+ and Bi3+ in Ca2NaMg2(VO4)3: color-tunable luminescence via efficient energy transfer from (VO4)3− to Eu3+ /Sm3+ ions. Dyes Pigments 155:258–264

    Article  Google Scholar 

  11. Venkatesan R, Velumani S, Ordon K, Makowska-Janusik M, Corbel G (2018) Nanostructured bismuth vanadate (BiVO4) thin films for efficient visible light photocatalysis. Mater Chem Phys 205:325–333

    Article  Google Scholar 

  12. Mialon G, Gohin M, Gacoin T, Boilot J-P (2008) High temperature strategy for oxide nanoparticle synthesis. ACS Nano 2(12):2505–2512

    Article  Google Scholar 

  13. Venkataraman BV, Sudha S (2005) Vanadium toxicity. Asian J Exp Sci 19(2):127–134

    Google Scholar 

  14. Clark AS, Fagant JM, Mitch WE (1985) Selectivity of the insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232:273–276

    Article  Google Scholar 

  15. Biswas P, Kumar V, Padha N, Swart HC (2017) Synthesis, structural and luminescence studies of LiSrVO4:Sm3+ nanophosphor to fill amber gap in LEDs under n-UV excitation. J Mater Sci Mater Electron 28:6159–6168

    Article  Google Scholar 

  16. Nakajima T, Isobe M, Tsuchiya T, Ueda Y, Kumagai T (2008) Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices. Nat Mater 7:735–740

    Article  ADS  Google Scholar 

  17. Shinde KN, Singh R, Dhoble SJ (2014) Photoluminescent characteristics of the single-host white-light-emitting Sr3-3x/2(VO4)2:xEu (0<x<0.3) phosphors for LEDs. J Lumin 146:91–96

    Article  Google Scholar 

  18. Lin H-Y, Chang W-F, Chu S-Y (2013) Luminescence of (Ca,Sr)3(VO4)2:Pr3+,Eu3+phosphor for use in CuPc-based solar cells and white light-emitting diodes. J Lumin 133:194–199

    Article  Google Scholar 

  19. Lisiecki R, Ryba-Romanowski W, Cavalli E, Bettinelli M (2010) Optical spectroscopy of Er3+-doped LaVO4 crystal. J Lumin 130:131–136

    Article  Google Scholar 

  20. Chukova O, Nedilko S, Nedilko SG, Sherbatsky V, Voitenko T (2013) Comparable structural and luminescent characterization of the La1-xEuxVO4 solid solutions synthesized by solid state and co-precipitation methods. Solid State Phenom 200:186–192

    Article  Google Scholar 

  21. Park SW, Yang HK, Chung JW, Moon BK, Choi BC, Jeong JH (2010) Enhanced red emission of LaVO4:Eu3+ phosphors by Li-doping. J Korean Phys Soc 57:1764–1768

    Article  Google Scholar 

  22. Xue C, Xia Z (2013) Luminescence properties of Li2Ca2ScV3O12 and Li2Ca2ScV3O12:Eu3+ synthesized by solid-state reaction method. Opt Mater 35:2736–2739

    Article  ADS  Google Scholar 

  23. Chukova OV, Nedilko SG, Slepets AA, Nedilko S, Voitenko TA (2018) Synthesis and investigation of La,Ca -doped EuVO4 nanoparticles with enhanced excitation by near violet light. Phys Status Solidi A 215:1700894–1700897

    Article  ADS  Google Scholar 

  24. Krishna Bharat L, Jeon S-K, Gopi Krishna K, Yu JS (2017) Rare-earth free self-luminescent Ca2KZn2(VO4)3 phosphors for intense white light-emitting diodes. Sci Rep 7:42348

    Article  ADS  Google Scholar 

  25. Li T, Luo J, Honda Z, Fukuda T, Kamata N (2012) Sintering condition and optical properties of Zn3V2O8. Phosphor Adv Mater Phys Chem 2:173–177

    Article  Google Scholar 

  26. Chukova OV, Nedilko SG, Slepets AA, Nedilko SA, Voitenko TA (2017) Synthesis and properties of the La1-x-yEuyCaxVO4, (0 ≤ x, y ≤ 0.2) compounds. Nanoscale Res Lett 12:340–311

    Article  ADS  Google Scholar 

  27. Bhatkar VB (2013) Synthesis and luminescence properties of yttrium vanadate based phosphors. Int J Eng Sci Innov Technol 2:426–432

    Google Scholar 

  28. Yang P, Huang S, Kong D, Lin J, Fu H (2007) Luminescence functionalization of SBA-15 by YVO4:Eu 3+ as a novel drug delivery system. Inorg Chem 46(8):3203–3211

    Article  Google Scholar 

  29. Shen J, Sun L-D, Yan C-H (2008) Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans 42(14):5661–5808

    Google Scholar 

  30. Chornii V, Chukova O, Nedilko SG, Nedilko S, Voitenko T (2016) Enhancement of emission intensity of LaVO4:RE3+ luminescent solar light absorbers. Phys Status Solidi C 13(1):40–46

    Article  ADS  Google Scholar 

  31. Nedilko SG, Chornii V, Chukova O, Degoda V, Bychkov K, Terebilenko K, Slobodyanik M (2016) Luminescence properties of the new complex La,BiVO4: Mo,Eu compounds as materials for down-shifting of VUV–UV radiation. Radiat Meas 90:282–286

    Article  Google Scholar 

  32. Van der Ende BM, Aarts L, Meijerink A (2009) Lanthanide ions as spectral converters for solar cells. Phys Chem Chem Phys 11:11081–11095

    Article  Google Scholar 

  33. Kumar V, Khan AF, Chawla S (2013) Intense red-emitting multi-rare-earth doped nanoparticles of YVO 4 for spectrum conversion towards improved energy harvesting by solar cells. J Phys D Appl Phys 46:365101–365109

    Article  Google Scholar 

  34. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  ADS  Google Scholar 

  35. Morton O (2006) Solar energy: a new day dawning? Silicon Valley sunrise. Nature 443:19–22

    Article  ADS  Google Scholar 

  36. Van der Zwaan B, Rabl A (2003) Prospects for PV: a learning curve analysis. Sol Energy 74:19–31

    Article  ADS  Google Scholar 

  37. Goetzberger A, Hebling C, Schock HW (2003) Photovoltaic materials. History, status and outlook. Mater Sci Eng R 40:1–46

    Article  Google Scholar 

  38. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173–201

    Article  Google Scholar 

  39. Henderson B, Imbusch GF (1989) Optical spectroscopy of inorganic solids. Oxford University Press, Oxford, 657 p

    Google Scholar 

  40. Auzel F (2005) Up-conversions in RE-doped solids. In: Liu G, Jacquier B (eds) Spectroscopic properties of rare earths in optical materials. Springer, Berlin, pp 266–319

    Chapter  Google Scholar 

  41. Li W, Li D, Lin Y, Wang P, Chen W, Fu X, Shao Y (2012) Evidence for the active species involved in the photodegradation process of methyl orange on TiO2. J Phys Chem 116(5):3552–3560

    Google Scholar 

  42. Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem 116(8):5082–5089

    Google Scholar 

  43. Zhang Y, Li G, Yang X, Yang H, Lu Z, Chen R (2013) Monoclinic BiVO4 micro-/nanostructures: microwave and ultrasonic wave combined synthesis and their visible-light photocatalytic activities. J Alloys Compd 551:544–550

    Article  Google Scholar 

  44. Sivakumar V, Suresh R, Giribabu K, Narayanan V (2015) BiVO4 nanoparticles: preparation, characterization and photocatalytic activity. Cogent Chem 1:1074647

    Article  Google Scholar 

  45. Yang X, Zuo W, Li F, Li T (2015) Surfactant-free and controlled synthesis of hexagonal CeVO4 nanoplates: photocatalytic activity and superhydrophobic property. ChemistryOpen 4:288–294

    Article  Google Scholar 

  46. Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201

    Google Scholar 

  47. Errandonea D, Garg AB (2018) Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Prog Mater Sci 97:123–169

    Article  Google Scholar 

  48. Chukova OV, Nedilko SG, Slepets AA, Nedilko S, Voitenko TA (2017) Crystal field effect on luminescent characteristics of europium doped orthovanadate nanoparticles, proceedings of the 2017 IEEE 7th international conference on nanomaterials: applications and properties. NAP 2017:81903497–81903495

    Google Scholar 

  49. Park SW, Yang HK, Chung JW, Chen Y, Moon BK, Cho BC, Jeon JH, Kim JH (2010) Photoluminescent properties of LaVO4 Eu3+ by structural transformation. Physica B 405:4040–4044

    Article  ADS  Google Scholar 

  50. Errandonea D, Pellicer-Porres J, Martinez-Garcia D, Ruiz-Fuertes J, Friedrich A, Morgenroth W, Popescu C, Rodríguez-Hernández P, Muñoz A, Bettinelli M (2016) Phase Stability of Lanthanum Orthovanadate at High Pressure. J Phys Chem C 120:13749–13762

    Article  Google Scholar 

  51. Errandonea D, Achary SN, Pellicer-Porres J, Tyagi AK (2013) Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases. Inorg Chem 52:5464–5469

    Article  Google Scholar 

  52. Chukova O, Nedilko S, Scherbatskyi V (2012) Effect of annealing on luminescence properties of the undoped and rare earth doped lead tungstate crystals. Opt Mater 34:2071–2075

    Article  ADS  Google Scholar 

  53. Zorenko Y, Gorbenko V, Voloshinovskii A, Stryganyuk G, Nedilko S, Degoda V, Chukova O (2005) Luminescence of Sc-related centers in single crystalline films of Lu 3Al5O12 garnet. Phys Status Solidi C 2:105–108

    Article  ADS  Google Scholar 

  54. Malashkevich GE, Chukova OV, Nedilko SG, Shevchenko GP, Bokshyts YV, Kouhar VV (2016) Influence of gold nanoparticles on luminescence of Eu3+ ions sensitized by structural defects in germanate films. J Phys Chem C 120:15369–15377

    Article  Google Scholar 

  55. Santos CC, Silva EN, Ayala AP, Guedes I, Pizani PS, Loong CK, Boatner LA (2007) Raman investigations of rare earth orthovanadates. J Appl Phys 101:053511

    Article  ADS  Google Scholar 

  56. Huang Y, Seo H (2013) Structure and luminescence of new red-emitting materials-Eu3+−doped triple orthovanadates NaALa(VO4)2 (A = Ca, Sr, Ba). J Am Ceram Soc 96:1181–1187

    Article  Google Scholar 

  57. Chukova O, Nedilko S, Nedilko SG, Voitenko T, Gomenyuk O, Sheludko V (2015) Study of temperature behavior of luminescence emission of LaVO4 and La1-xEuxVO4 powders. Solid State Phenom 230:153–159

    Article  Google Scholar 

  58. Xu Z, Li C, Hou Z, Peng C, Lin J (2011) Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln = La to Lu) nano-/microcrystals via hydrothermal process. CrystEngComm 13:474–482

    Article  Google Scholar 

  59. Yoon SJ, Park K (2014) Synthesis and photoluminescent properties of white-emitting Sr2.91V2O8:0.06:Eu3+ phosphors. Opt Mater 36:1305–1310

    Article  ADS  Google Scholar 

  60. Chumha N, Kittiwachana S, Thongtem T, Thongtem S, Kaowphong S (2014) Synthesis and characterization of GdVO4 nanostructures by a tartaric acid-assisted sol–gel method. Ceram Int 40:16337–16342

    Article  Google Scholar 

  61. Chukova OV, Nedilko SG, Slepets AA, Nedilko S, Voitenko TA, Virko SV Influence of Ca2+ impurities on structure, morphological and optical characteristics of EuxVO4 and La1-xEuxVO4 luminescent nanoparticles, Proceedings of the 2018 IEEE 8th international conference on nanomaterials: applications and properties, NAP 2018, volume, accepted paper

    Google Scholar 

  62. Liu J, Li Y (2007) Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform Nanocrystals. Adv Mater 19:1118–1122

    Article  Google Scholar 

  63. Liu G, Duan X, Li H, Dong H (2009) Hydrothermal synthesis, characterization and optical properties of novel fishbone-like LaVO4:Eu3+ nanocrystals. Mater Chem Phys 115:165–171

    Article  Google Scholar 

  64. Escobar Von ME, Baran EJ (1978) Uber die tetragonale Modifikation von Lanthan-orthowanadat. Z Anorg Allg Chem 441:273–277

    Article  Google Scholar 

  65. Nakamoto K (1963) Infrared spectra of inorganic and coordination compounds. Wiley, New York, p 410

    Google Scholar 

  66. Lax M (1974) Symmetry principles in solid state and molecular physics, vol 499. Wiley, New York

    Google Scholar 

  67. Fang ZM, Hong Q, Zhou ZH, Dai SJ, Weng WZ, Wan HL (1999) Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal Lett 61:39–44

    Article  Google Scholar 

  68. Sun L, Zhao X, Li Y, Li P, Sun H, Cheng X, Fan W (2010) First-principles studies of electronic, optical and vibrational properties of LaVO4 polymorph. J Appl Phys 108(9):093519

    Article  ADS  Google Scholar 

  69. Baran EJ (1976) Die Schwingungsspektren von Ca3(VO4)2 und Ca3(AsO). Z Anorg Allg Chem 497:131–136

    Article  Google Scholar 

  70. Parhi P, Manivannan V, Kohl S, McCurdy P (2008) Synthesis and characterization of M3V2O8 (M = Ca, Sr and Ba) by a solid-state metathesis approach. Bull Mater Sci (India) 31(6):885–890

    Article  Google Scholar 

  71. Ardanova LI, Chukova OV, Getman EI, Marchenko VI, Nedilko SG, Scherbatskyi VP (2002) Luminescent properties of the Ca5(VO4)3OH apatites with the heterovalence calcium replacement on alkali and rare-earth elements. Funct Mater 9(2):326–331

    Google Scholar 

  72. Sobszyk M, Szymański D (2013) A study of optical properties of Sm3+ ions in α-Na3Y(VO4)2 single crystals. J Lumin 142:96–102

    Article  Google Scholar 

  73. Song D, Guo C, Li T (2015) Luminescence of the self-activated vanadate phosphors Na2LnMg2V3O12 (Ln = Y, Gd). Ceram Int 41:6518–6524

    Article  Google Scholar 

  74. Tamilmani V, Sreeram KJ, Nair BU (2015) Catechin assisted phase and shape selection for luminescent LaVO4 zircon. RSC Adv 5(100):82513–82523

    Article  Google Scholar 

  75. Boyko R, Chukova OV, Gomenyuk OV, Nagornyi PG, Nedilko SG (2005) Origin of red luminescence of sodium titanium phosphate crystals contained chromium and titanium ions. Phys Status Solidi 2(1):712–715

    Article  Google Scholar 

  76. Chukova O, Nedilko S, Scherbatskyi V (2010) Luminescent spectroscopy and structure of centers of the impurity Eu3+ ions in lead tungstate crystals. J Lumin 130(10):1805–1812

    Article  Google Scholar 

  77. Wybourne BG (1965) Spectroscopic properties of ions in crystals. Wiley, New York, p 236

    Google Scholar 

Download references

Acknowledgments

This project has received funding from Ministry of Education and Science of Ukraine and from the EU-H2020 research and innovation program under grant agreement No 654360 having benefited from the access provided by Institute of Electronic Structure & Laser (IESL) of Foundation for Research & Technology Hellas (FORTH) in Heraklion, Crete, Greece within the framework of the NFFA-Europe Transnational Access Activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Chukova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chukova, O.V. et al. (2019). Structure, Morphology, and Spectroscopy Studies of La1−xRExVO4 Nanoparticles Synthesized by Various Methods. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_15

Download citation

Publish with us

Policies and ethics