Skip to main content

Nano-sized Adsorbate Island Formation in Adsorptive Anisotropic Multilayer Systems

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

  • 488 Accesses

Abstract

We derive the generalized model of multilayer adsorptive system describing pattern formation on a surface of thin films during adsorption/desorption processes at condensation from gaseous phase and in plasma-condensate systems by taking into account transference reactions between layers. We discuss isotropic and anisotropic diffusion of adsorbate between layers, separately, in the framework of theoretical study and numerical simulations. It is shown that in multilayer adsorptive system, a cascade of first-order phase transitions is realized, and the number of such phase transitions is defined by the number of layers. We show that in the isotropic case of the standard vertical diffusion, an increase in the adsorption coefficient leads to a change in the surface morphology. In anisotropic gas-condensate system with preferential motion of adatoms from upper layers to lower ones, we define conditions for the adsorbate island formation. We discuss an influence of the anisotropy strength onto critical size of adsorbate islands and perform statistical analysis of the multilayer surface structures. By considering plasma-condensate systems, we show that an increase in the anisotropy strength leads to both the transformation of the surface morphology from separated nano-holes inside adsorbate matrix toward separated adsorbate islands and decrease in the linear size of adsorbate islands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirota E, Sakakima H, Inomata K (2002) Giant magneto-resistance devices. Springer, Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Tokyo

    Book  Google Scholar 

  2. Warburton RJ, Schäflein C, Haft D et al (2000) Optical emission from a charge-tunable quantum ring. Nature 405:926

    Article  ADS  Google Scholar 

  3. Shah A, Torres P, Tscharner R et al (1999) Photovoltaic technology: the case for thin-film solar cells. Science 285:692

    Article  Google Scholar 

  4. Zhao L-D, Lo S-H, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373

    Article  ADS  Google Scholar 

  5. Wadley HNG, Zhou X, Johnson RA et al (2001) Mechanisms, models and methods of vapor deposition. Prog Mater Sci 46:329

    Article  Google Scholar 

  6. Sree Harsha KS (2006) Principles of physical vapor deposition of thin films. Elesevier, Amsterdam/Boston/London

    Google Scholar 

  7. Perotto G, Bello V, Cesca T et al (2010) Nanopatterning of silica with mask-assisted ion implantation. Nucl Instrum Methods Phys Res B 268:3211

    Article  ADS  Google Scholar 

  8. Bernas H (2010) Can ion beams control nanostructures in insulators? Nucl Instrum Methods Phys Res B 268:3171

    Article  ADS  Google Scholar 

  9. Bradley RM, Harper JME (1988) Theory of ripple topography induced by ion bombardment. J Vac Sci Technol A 6(4):2390

    Article  ADS  Google Scholar 

  10. Karmakar P (2013) Nanostructures in thin films by keV ion beams. In: Som T, Kanjilal D (eds) Nanofabrication by ion-beam sputtering. Taylor & Francis Group, LLC, Singapore

    Google Scholar 

  11. Lian J, Zhou W, Wei QM et al (2006) Simultaneous formation of surface ripples and metallic nanodots induced by phase decomposition and focused ion beam patterning. Appl Phys Lett 88:093112

    Article  ADS  Google Scholar 

  12. Kharchenko DO, Kharchenko VO, Lysenko IO, Kokhan SV (2010) Stochastic effects at ripple formation processes in anisotropic systems with multiplicative noise. Phys Rev E 82:061108(13)

    Article  ADS  Google Scholar 

  13. Kharchenko VO, Kharchenko DO (2011) Morphology change of the silicon surface induced by Ar+ ion beam sputtering. Condens Matter Phys 14(N2):23602

    Article  Google Scholar 

  14. Yutakam Y, Norihito S, Seiichi W et al (2011) Self-organized two-dimensional vidro-nanodot array on laser-irradiated Si surface. Appl Phys Express 4(5):055202

    Article  ADS  Google Scholar 

  15. Huang SM, Hong MH, Lu YF et al (2002) Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. J Appl Phys 91(5):3268

    Article  ADS  Google Scholar 

  16. Lu Y, Chen SC (2003) Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14:505

    Article  ADS  Google Scholar 

  17. Venables JA, Spiller GDT, Hanbücken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399

    Article  ADS  Google Scholar 

  18. Pimpinelli A, Villian J (1998) Physics of crystal growth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Caflisch RE (2006) Proceedings of the international congress of mathematicians, Madrid, Spain, p 1419

    Google Scholar 

  20. Kharchenko DO, Kharchenko VO, Lysenko IO (2011) Phase-field modeling of epitaxial growth in stochastic systems with interacting adsorbate. Phys Scr 83:045802

    Article  ADS  Google Scholar 

  21. Kharchenko DO, Kharchenko VO, Zhylenko TI et al (2013) A study of pyramidal islands formation in epitaxy within the generalized phase-field model. Eur Phys J B 86(4):175

    Article  ADS  MathSciNet  Google Scholar 

  22. Kharchenko DO, Kharchenko VO, Kokhan SV (2014) Universality and self-similar behaviour of non-equilibrium systems with non-Fickian diffusion. Condens Matter Phys 17:33004

    Article  Google Scholar 

  23. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2015) Scaling properties of pyramidal Islands formation process at epitaxial growth. Eur Phys J B 88:3

    Article  ADS  Google Scholar 

  24. Pohl K, Bartelt MC, de la Figuera J et al (1999) Identifying the forces responsible for self-organization of nanostructures at crystal surfaces. Nature 397:238

    Article  ADS  Google Scholar 

  25. Mo YW, Swartzentruber BS, Kariotis R et al (1989) Growth and equilibrium structures in the epitaxy of Si on Si(001). Phys Rev Lett 63:2393

    Article  ADS  Google Scholar 

  26. Cirlin GE, Egorov VA, Sokolov LV, Werner P (2002) Ordering of nanostructures in a Si/Ge0.3Si0.7/Ge system during molecular beam epitaxy. Semiconductors 36(N11):1294–1298

    Article  ADS  Google Scholar 

  27. Bucher JP, Hahn E, Fernandez P et al (1994) Transition from one-to two-dimensional growth of Cu on Pd (110) promoted by cross-exchange migration. Europhys Lett 27:473

    Article  ADS  Google Scholar 

  28. Besenbacher F, Pleth Nielsen L, Sprunger PT (1997) Surface alloying in heteroepitaxial metal-on- metal growth (Chapter 6). In: King DA, Woodruff DP (eds) The chemical physics of solid surfaces, vol 8. Elsevier, Amsterdam, p 207

    Google Scholar 

  29. Brune H (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf Sci Rep 31:121–229

    Article  ADS  Google Scholar 

  30. Mikhailov A, Ertl G (1995) Pattern formation by adsorbates with attractive lateral interactions. Chem Phys Lett 238:104

    Article  ADS  Google Scholar 

  31. Hildebrand M, Mikhailov AS (1996) Mesoscopic modeling in the kinetic theory of adsorbates. J Phys Chem 100:19089

    Article  Google Scholar 

  32. Batogkh D, Hildebrant M, Krischer F, Mikhailov A (1997) Nucleation kinetics and global coupling in reaction-diffusion systems. Phys Rep 288:435

    Article  ADS  Google Scholar 

  33. Hildebrand M, Mikhailov AS, Ertl G (1998) Traveling nanoscale structures in reactive adsorbates with attractive lateral interactions. Phys Rev Lett 81:2602(4)

    Article  ADS  Google Scholar 

  34. Hildebrand M, Mikhailov AS, Ertl G (1998) Nonequilibrium stationary microstructures in surface chemical reactions. Phys Rev E 58:5483(11)

    Article  ADS  Google Scholar 

  35. Mangioni SE, Wio HS (2005) Interplay between noise and boundary conditions in pattern formation in adsorbed substances. Phys Rev E 71:056203

    Article  ADS  Google Scholar 

  36. Mangioni SE (2010) Nano-pattern stabilization by multiplicative noise. Physica A 389:1799

    Article  ADS  Google Scholar 

  37. Casal SB, Wio HS, Mangioni S (2002) Phase transitions and adsorption isotherm in multilayer adsorbates with lateral interactions. Physica A 311:443

    Article  ADS  Google Scholar 

  38. Walgraef D (2002) Nanostructure initiation during the early stages of thin film growth. Physica E 15:33

    Article  ADS  Google Scholar 

  39. Walgraef D (2003) Nanostructure evolution during thin film deposition. Physica E 18:393

    Article  ADS  Google Scholar 

  40. Walgraef D (2004) Reaction-diffusion approach to nanostructure formation and texture evolution in adsorbed monoatomic layers. Int J Quantum Chem 98:248

    Article  Google Scholar 

  41. Kharchenko VO, Kharchenko DO (2012) Nanosize pattern formation in overdamped stochastic reaction-diffusion systems with interacting adsorbate. Phys Rev E 86:041143

    Article  ADS  Google Scholar 

  42. Kharchenko VO, Kharchenko DO, Dvornichenko AV (2014) Statistical properties of nanosized clusters on a surface in overdamped stochastic reaction-Cattaneo systems. Surf Sci 630:158

    Article  ADS  Google Scholar 

  43. Kharchenko VO, Kharchenko DO, Kokhan SV et al (2012) Properties of nano-Islands formation in nonequilibrium reaction-diffusion systems with memory effects. Phys Scr 86:055401

    Article  Google Scholar 

  44. Kharchenko DO, Kokhan SV, Dvornichenko AV (2009) Noise induced patterning in reaction-diffusion systems with non-Fickian diffusion. Physica D 238:2251

    Article  ADS  MathSciNet  Google Scholar 

  45. Perekrestov VI, Olemskoi AI, Kosminska YuO, Mokrenko AA (2009) Self-organization of quasi-equilibrium steady-state condensation in accumulative ion-plasma devices. Phys Let A 373:3386

    Article  ADS  Google Scholar 

  46. Kharchenko VO, Kharchenko DO, Yanovsky VV (2017) Nano-sized adsorbate structure formation in anisotropic multilayer system. Nanoscale Res Lett 12:337

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support of this research by the Ministry of Education and Science of Ukraine, project No. 0117U003927, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vasyl O. Kharchenko or Dmitrii O. Kharchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kharchenko, V.O., Dvornichenko, A.V., Kharchenko, D.O. (2019). Nano-sized Adsorbate Island Formation in Adsorptive Anisotropic Multilayer Systems. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_10

Download citation

Publish with us

Policies and ethics