Skip to main content

Subclasses of Mechanical Problems Arising from the Direct Approach for Homogeneous Plates

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

Pavel Andreevich Zhilin proposed a theory for deformable directed surfaces which builds a generalized framework in context of linear engineering theories of plates. We introduce this theory axiomatically, delineate the basic ideas and formalize the governing equations. In doing so we present a self-contained set of equations for time-invariant problems. Thereof, subclasses of mechanical problems can be deduced, whereby in present context the main existing theories are derived. These are in-plane and out-of-plane loaded plate problems. Next to the in-plane loaded plate problem, we also distinguish between transverse shear-deformable and transverse shear-rigid out-of-plane loaded plates. Typical representatives are the plate theories by Kirchhoff, Reissner, and Mindlin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Airy, G.B.: On the strains in the interior of beams. Philos. Trans. R. Soc. 153, 49–80 (1863). https://doi.org/10.1098/rstl.1863.0004

    Article  Google Scholar 

  2. Altenbach, H.: The direct approach in the theory of viscoelastic shells. Habilitation thesis, Leningrad Polytechnic Institute (1987) (in Russia)

    Google Scholar 

  3. Altenbach, H., Meenen, J.: On the different possibilities to derive plate and shell theories. In: Jaiani, G., Podio-Guidugli, P. (eds.) IUTAM Symposium on Relations of Shell Plate Beam and 3D Models, pp. 37–47. Springer Berlin, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8774-5_3

    Chapter  Google Scholar 

  4. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010). https://doi.org/10.1007/s00419-009-0365-3

    Article  Google Scholar 

  5. Aron, H.: Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale. Crelles Journal für die reine und angewandte Mathematik 78, 136–174 (1874). https://doi.org/10.1515/crll.1874.78.136

    Article  Google Scholar 

  6. Aßmus, M.: Structural mechanics of anti-sandwiches: an introduction. In: SpringerBriefs in Continuum Mechanics. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-04354-4

    Book  Google Scholar 

  7. Aßmus, M., Eisenträger, J., Altenbach, H.: Projector representation of isotropic linear elastic material laws for directed surfaces. Zeitschrift für Angewandte Mathematik und Mechanik 97(12), 1625–1634 (2017). https://doi.org/10.1002/zamm.201700122

    Article  Google Scholar 

  8. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002). https://doi.org/10.1007/BF02736649

    Article  Google Scholar 

  9. Cauchy, A.L.: Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides. élastiques ou non élastiques. Bulletin de la Societé Philomathique 3(10), 9–13 (1823). https://doi.org/10.1017/CBO9780511702518.038

  10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris (1909). http://jhir.library.jhu.edu/handle/1774.2/34209

  11. Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1957). https://doi.org/10.1007/BF00298012

    Article  Google Scholar 

  12. Föppl, A.: Vorlesungen über technische Mechanik. B.G. Teubner, Leipzig (1907)

    Google Scholar 

  13. Galerkin, B.G.: Rods and plates. Using series for some problems in the elastic equilibrium of rods and plates. Engineers Bulletin (Vestnik Inzhenerov), Petrograd 19, 897–908 (1915) (in Russia)

    Google Scholar 

  14. Germain, S.: Recherches sur la théorie des surfaces élastiques. Veuve Courtier, Paris (1821). www.cambridge.org/9781108050371

  15. Green, A.E., Naghdi, P.M., Wainwright, W.L.: A general theory of a Cosserat surface. Arch. Ration. Mech. Anal. 20(4), 287–308 (1965). https://doi.org/10.1007/BF00253138

    Article  Google Scholar 

  16. Kantorowitsch, S.B., Krylow, W.I.: Näherungsmethoden der höheren Analysis. Deutscher Verlag der Wissenschaften, Berlin (1956)

    Google Scholar 

  17. von Kármán, T.: Festigkeitsprobleme im Maschinenbau. Encyklopädie der mathematischen Wissenschaften IV 311–384, (1910)

    Google Scholar 

  18. Kienzler, R., Schneider, P.: Consistent theories of isotropic and anisotropic plates. J. Theor. Appl. Mech. 50(3), 755–768 (2012). http://www.ptmts.org.pl/jtam/index.php/jtam/article/view/v50n3p755

  19. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 40, 51–88 (1850). https://doi.org/10.1515/crll.1850.40.51

  20. Koiter, W.: Theory of thin shells. Foundations and basic equations of shell theory: a survey of recent progress. In: IUTAM Symposium Copenhagen 1967, pp. 93–105. Springer, Berlin (1969). http://www.springer.com/gp/book/9783642884788

  21. Lagrange, J.L.: Annales de Chimie 39(149), 207 (1828)

    Google Scholar 

  22. Levy, M.: Mémoire sur la théorie des plaques élastiques planes. Journal de Mathématiques Pures et Appliquées 3(3), 219–306 (1877). http://eudml.org/doc/235159

  23. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. Trans. R. Soc. London, Ser. A Math. Phys. Eng. Sci. 179, 491–546 (1888). https://doi.org/10.1098/rsta.1888.0016

    Article  Google Scholar 

  24. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 18, 31–38 (1951)

    Google Scholar 

  25. Nádai, A.: Die elastischen Platten—Die Grundlagen und Verfahren zur Berechnung ihrer Formänderungen und Spannungen, sowie die Anwendungen der Theorie der ebenen zweidimensionalen elastischen Systeme auf praktische Aufgaben. Springer, Berlin (1925). https://doi.org/10.1007/978-3-662-11487-2

    Book  Google Scholar 

  26. Naumenko, K., Altenbach, J., Altenbach, H.: Variationslösungen für schubstarre Platten (I). Technische Mechanik 19(2), 161–174 (1999)

    Google Scholar 

  27. Naumenko, K., Altenbach, J., Altenbach, H.: Variationslösungen für schubstarre Platten (II). Technische Mechanik 19(3), 177–185 (1999)

    Google Scholar 

  28. Naumenko, K., Altenbach, J., Altenbach, H., Naumenko, V.K.: Closed and approximate analytical solutions for rectangular Mindlin plates. Acta Mech. 147(1), 153–172 (2001). https://doi.org/10.1007/BF01182359

    Article  Google Scholar 

  29. Naumenko, K., Eremeyev, V.A.: A layer-wise theory for laminated glass and photovoltaic panels. Compos. Struct. 112, 283–291 (2014). https://doi.org/10.1016/j.compstruct.2014.02.009

    Article  Google Scholar 

  30. Navier, M.: Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques. Bulletin de la Société Philomathique de Paris, pp. 177–181 (1823)

    Google Scholar 

  31. Neff, P., Hong, K.I., Jeong, J.: The Reissner-Mindlin plate is the \(\Gamma \)-limit of Cosserat elasticity. Math. Models Methods Appl. Sci. 20(9), 1553–1590 (2010). https://doi.org/10.1142/S0218202510004763

    Article  Google Scholar 

  32. Palmow, W.A., Altenbach, H.: Über eine Cosseratsche Theorie für elastische Platten. Technische Mechanik 3(3), 5–9 (1982). http://www.uni-magdeburg.de/ifme/zeitschrift_tm/1982_Heft3/Palmow_Altenbach.pdf

  33. Podio-Guidugli, P.: A primer in elasticity. J. Elast. Phys. Sci. Solids 58(1), 1–104 (2000). https://doi.org/10.1023/A:1007672721487

    Article  Google Scholar 

  34. Poisson, S.D.: Sur l’équilibre et mouvement des corps élastiques. Mémoires de l’Académie des Sciences VIII (1829)

    Google Scholar 

  35. Reddy, J.N.: A simple higher-order theory for laminated composite plates. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 51(4), 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  Google Scholar 

  36. Reissner, E.: On the theory of bending of elastic plates. J. Math. Phys. 23(1–4), 184–191 (1944). https://doi.org/10.1002/sapm1944231184

    Article  Google Scholar 

  37. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 12, 69–77 (1945)

    Google Scholar 

  38. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 135, 1–61 (1909). https://doi.org/10.1515/crll.1909.135.1

    Article  Google Scholar 

  39. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. Ser. 6 41(245), 744–746 (1921). https://doi.org/10.1080/14786442108636264

    Article  Google Scholar 

  40. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43(253), 125–131 (1922). https://doi.org/10.1080/14786442208633855

    Article  Google Scholar 

  41. Tonti, E.: On the mathematical structure of a large class of physical theories. Accademia Nazionale Dei Lincei 52(1), 48–56 (1972)

    Google Scholar 

  42. Vlasov, V.Z.: General theory of shells and its application in engineering. NASA Technical Translation, Washington, D.C. (1964)

    Google Scholar 

  43. Wlassow, W.S.: Allgemeine Theorie der Schalen und ihre Anwendung in der Technik. Staatsverlag technisch theoretische Literatur, Moskau (1949)

    Google Scholar 

  44. Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12(9), 635–648 (1976). https://doi.org/10.1016/0020-7683(76)90010-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the German Research Foundation (DFG) within the framework of the Research Training Group Micro-Macro-Interactions of Structured Media and Particle Systems (RTG 1554, grant no. 83477795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Aßmus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aßmus, M., Naumenko, K., Altenbach, H. (2019). Subclasses of Mechanical Problems Arising from the Direct Approach for Homogeneous Plates. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_4

Download citation

Publish with us

Policies and ethics