Skip to main content

On Performance of Nine-Node Quadrilateral Shell Elements 9-EAS11 and MITC9i

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

The chapter concerns nine-node quadrilateral shell elements derived for the Reissner-Mindlin kinematics and Green strain. They are based on the potential energy functional extended to include drilling rotations. A standard element of this class suffers from locking and over-stiffening; several special techniques are needed to improve its performance. We developed three nine-node shell elements with the membrane strains enhanced by the EAS11 representation of Bischoff and Ramm (Int. J. Num. Meth. Eng. 40:4427–4449, 1997 [2]). The transverse shear strains are treated either by the ANS method of Jang and Pinsky (Int. J. Num. Meth. Eng. 24:2389–2411, 1987 [6]), or are enhanced by the EAS6 representation of Sansour and Kollmann (Comput. Mech. 24:435–447, 2000 [17]), or remain unmodified. We also modify the EAS transformation rule, extending the idea put forward in Park and Lee (Comput. Mech. 15:473–484, 1995 [15]) for curved shells. Several numerical examples provide comparison of three 9-EAS11 elements to our MITC9i shell element of Wisniewski and Turska (Comput. Mech. 62, 499–523, 2018 [20]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Badur, J., Pietraszkiewicz, W.: On geometrically non-linear theory of elastic shells derived from pseudo-Cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W. (ed.) Finite Rotations in Structural Mechanics, pp. 19–32. Springer, Berlin (1986)

    Chapter  Google Scholar 

  2. Bischoff, M., Ramm, E.: Shear deformable shell elements for large strains and rotations. Int. J. Num. Meth. Eng. 40, 4427–4449 (1997)

    Article  Google Scholar 

  3. Celia, M.A., Gray, W.G.: An improved isoparametric transformation for finite element analysis. Int. J. Num. Meth. Eng. 20, 1447–1459 (1984)

    Article  Google Scholar 

  4. Huang, H-Ch.: Static and Dynamic Analyses of Plates and Shells. Springer, Berlin (1989)

    Book  Google Scholar 

  5. Huang, H.C., Hinton, E.: A nine node Lagrangian Mindlin plate element with enhanced shear interpolation. Eng. Comput. 1, 369–379 (1984)

    Article  Google Scholar 

  6. Jang, J., Pinsky, P.M.: An assumed covariant strain based 9-node shell element. Int. J. Num. Meth. Eng. 24, 2389–2411 (1987)

    Article  Google Scholar 

  7. Jarzebski, P., Wisniewski, K., Taylor, R.L.: On parallelization of the loop over elements in FEAP. Comput. Mech. 56(1), 77–86 (2015)

    Article  Google Scholar 

  8. Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18, 312–327 (2002)

    Article  Google Scholar 

  9. Koschnick, F., Bischoff, G.A., Camprubi, N., Bletzinger, K.U.: The discrete strain gap method and membrane locking. Comput. Methods Appl. Mech. Eng. 194, 2444–2463 (2005)

    Article  Google Scholar 

  10. MacNeal, R.H.: A simple quadrilateral shell element. Comput. Struct. 8(2), 175–183 (1978)

    Article  Google Scholar 

  11. MacNeal, R.H.: Finite Elements: Their Design and Performance. Mechanical Engineering, vol. 89. Marcel Dekker Inc., New York (1994)

    Google Scholar 

  12. MacNeal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1, 3–20 (1985)

    Article  Google Scholar 

  13. Panasz, P., Wisniewski, K.: Nine-node shell elements with 6 dofs/node based on two-level approximations. Part I: theory and linear tests. Finite Elem. Anal. Des. 44, 784–796 (2008)

    Article  Google Scholar 

  14. Panasz, P., Wisniewski, K., Turska, E.: Reduction of mesh distortion effects for nine-node elements using corrected shape functions. Finite Elem. Anal. Des. 66, 83–95 (2013)

    Article  Google Scholar 

  15. Park, H.C., Lee, S.W.: A local coordinate system for assumed strain shell element formulation. Comput. Mech. 15, 473–484 (1995)

    Article  CAS  Google Scholar 

  16. Robinson, J., Blackham, S.: An evaluation of lower order membranes as contained in MSC. NASTRAN, ASA and PAFEC FEM Systems, Robinson and Associates, Dorset, England (1979)

    Google Scholar 

  17. Sansour, C., Kollmann, F.G.: Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements. Comput. Mech. 24, 435–447 (2000)

    Article  Google Scholar 

  18. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 29, 1595–1638 (1990)

    Article  Google Scholar 

  19. Wisniewski, K.: Finite rotation shells. Basic Equations and Finite Elements for Reissner Kinematics. Springer, Berlin (2010)

    Google Scholar 

  20. Wisniewski, K., Turska, E.: Improved nine-node shell element MITC9i with reduced distortion sensitivity. Comput. Mech. 62, 499–523 (2018)

    Article  Google Scholar 

  21. Wisniewski, K., Panasz, P.: Two improvements in formulation of nine-node element MITC9. Int. J. Num. Meth. Eng. 93, 612–634 (2013)

    Article  Google Scholar 

  22. Wisniewski, K., Wagner, W., Turska, E., Gruttmann, F.: Four-node Hu-Washizu elements based on skew coordinates and contravariant assumed strain. Comput. Struct. 88, 1278–1284 (2010)

    Article  Google Scholar 

  23. Zienkiewicz, O.C., Taylor, R.L.: The finite element method. In: Basic Formulation and Linear Problems, vol. 1, 4th edn. McGraw-Hill (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wiśniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiśniewski, K., Turska, E. (2019). On Performance of Nine-Node Quadrilateral Shell Elements 9-EAS11 and MITC9i. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_35

Download citation

Publish with us

Policies and ethics