Comprehensive Congestion Analysis for 6LoWPANs

  • Hayder Al-KashoashEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter presents a comprehensive congestion analysis for 6LoWPAN network through analytical modelling, simulations and testbed results. Congestion occurs when multiple sensor nodes start to send packets concurrently at high data rate or when a node relays many flows across the network. Thus, link collision on the wireless channel and packet overflow at buffer nodes occur in the network [1]. Recently, a few papers have been presented to address congestion in 6LoWPAN networks [2, 3, 4, 5], but none considered congestion assessment and analysis. In [6], Hull et al. did a testbed experiment in a traditional WSN protocol stack with TinyOS where B-MAC and the single destination DSDV (Destination Sequenced Distance Vector) routing protocol are used. In this chapter, experiments in 6LoWPAN wireless sensor networks using the 6LoWPAN protocol stack and Contiki OS are considered.


  1. 1.
    Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115CrossRefGoogle Scholar
  2. 2.
    Michopoulos V, Guan L, Oikonomou G, Phillips I (2011) A comparative study of congestion control algorithms in IPv6 wireless sensor networks. In: Proceedings of international conference on distributed computing in sensor systems and workshops (DCOSS). IEEE, pp 1–6Google Scholar
  3. 3.
    Michopoulos V, Guan L, Oikonomou G, Phillips I (2012) DCCC6: duty cycle-aware congestion control for 6LoWPAN networks. In: Proceedings of international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 278–283Google Scholar
  4. 4.
    Castellani AP, Rossi M, Zorzi M (2014) Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Netw 18:71–84CrossRefGoogle Scholar
  5. 5.
    Hellaoui H, Koudil M (2015) Bird flocking congestion control for CoAP/RPL/6LoWPAN networks. In: Proceedings of the workshop on IoT challenges in mobile and industrial systems. ACM, pp 25–30Google Scholar
  6. 6.
    Hull B, Jamieson K, Balakrishnan H (2004) Mitigating congestion in wireless sensor networks. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, pp 134–147Google Scholar
  7. 7.
    Gebali F (2015) Analysis of computer networks. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Keshav S (2012) Mathematical foundations of computer networking. Addison-Wesley, Upper Saddle RiverGoogle Scholar
  9. 9.
    Dunkels A, Grönvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of 29th annual IEEE international conference on local computer networks. IEEE, pp 455–462Google Scholar
  10. 10.
    Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-level sensor network simulation with COOJA. In: Proceedings of 31st IEEE conference on local computer networks. IEEE, pp 641–648Google Scholar
  11. 11.
    Winter T, Thubert P, Brandt A, Hui J, Kelsey R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. IETF, RFC 6550Google Scholar
  12. 12.
    Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Standard 802.15.4 (2003)Google Scholar
  13. 13.
    Di Marco P, Park P, Fischione C, Johansson KH (2012) Analytical modeling of multi-hop IEEE 802.15. 4 networks. IEEE Trans Veh Technol 61(7):3191–3208CrossRefGoogle Scholar
  14. 14.
    Sun T, Chen L-J, Han C-C, Yang G, Gerla M (2006) Measuring effective capacity of IEEE 802.15. 4 beaconless mode. In: Proceedings of wireless communications and networking conference (WCNC), vol 1. IEEE, pp 493–498Google Scholar
  15. 15.
    Sun T, Chen L-J, Yang G, Sanadidi M, Gerla M (2005) SenProbe: path capacity estimation in wireless sensor networks. In: Proceedings of the wireless traffic measurements and modeling workshop (SenMetrics). CiteseerGoogle Scholar
  16. 16.
    Latré B, Mil PD, Moerman I, Dhoedt B, Demeester P, Dierdonck NV (2006) Throughput and delay analysis of unslotted IEEE 802.15. 4. J Netw 1(1):20–28Google Scholar
  17. 17.
    Yang S-H (2014) Wireless sensor networks: principles, design and applications. Springer, LondonCrossRefGoogle Scholar
  18. 18.
    Hui J, Thubert P (2011) Compression format for IPv6 datagrams over IEEE 802.15. 4-based networks. IETF RFC 6282Google Scholar
  19. 19.
    Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of IPv6 packets over IEEE 802.15.4 networks. IETF RFC 4944Google Scholar
  20. 20.
    Dunkels A, Österlind F, He Z (2007) An adaptive communication architecture for wireless sensor networks. In: Proceedings of the 5th international conference on embedded networked sensor systems. ACM, pp 335–349Google Scholar
  21. 21.
    Al-Nidawi Y, Salman N, Kemp AH (2014) Mesh-under cluster-based routing protocol for IEEE 802.15.4 sensor network. In: Proceedings of 20th European wireless conference. VDE, pp 1–7Google Scholar
  22. 22.
    Teo KH, Abdullah A, Subramaniam SK, Sinniah GR (2013) New reassembly buffer management system in 6LoWPAN. Proc Asia-Pac Adv Netw 36:57–64CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technical Institute/QurnaSouthern Technical UniversityBasraIraq

Personalised recommendations