• Hayder Al-KashoashEmail author
Part of the Springer Theses book series (Springer Theses)


The internet of things (IoT) is considered to be the next big challenge for the Internet research community. Recently, the IoT has drawn significant research attention [1]. The IoT will comprise of billions of communicating devices, which extend the borders of the cyber world with physical entities and virtual components [2, 3]. These things, such as wireless sensor nodes, radio-frequency identification (RFID) tags and near-field communication (NFC) devices, are connected to the Internet with the ability to sense status and use real-time data. Also, they access historical data and developed algorithms, possibly triggering devices. This is leading to very powerful smart environments, e.g. building, health care, etc. [1, 4].


  1. 1.
    Shelby Z, Bormann C (2009) 6LoWPAN: The wireless embedded internet. Wiley, New JerseyCrossRefGoogle Scholar
  2. 2.
    Li S, Da Xu L, Zhao S (2015) The Internet of things: a survey. Inf Syst Front 17(2):243–259CrossRefGoogle Scholar
  3. 3.
    Atzori L, Iera A, Morabito G (2010) The Internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefGoogle Scholar
  4. 4.
    Alcaraz C, Najera P, Lopez J, Roman R (2010) Wireless sensor networks and the internet of things: do we need a complete integration? In: Proceedings of 1st international workshop on the security of the internet of things (SecIoT’10), Tokyo (Japan), 29th November, 2010Google Scholar
  5. 5.
    Khalil N, Abid MR, Benhaddou D, Gerndt M (2014) Wireless sensors networks for internet of things. In: Proceedings of IEEE 9th international conference on intelligent sensors, sensor networks and information processing (ISSNIP). IEEE (2014), pp 1–6Google Scholar
  6. 6.
    Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115CrossRefGoogle Scholar
  7. 7.
    Kafi MA, Djenouri D, Ben-Othman J, Badache N (2014) Congestion control protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutor 16(3):1369–1390CrossRefGoogle Scholar
  8. 8.
    Michopoulos V, Guan L, Oikonomou G, Phillips I (2011) A comparative study of congestion control algorithms in IPv6 wireless sensor networks. In: Proceedings of international conference on distributed computing in sensor systems and workshops (DCOSS). IEEE (2011), pp 1–6Google Scholar
  9. 9.
    Shelby Z, Hartke K, Bormann C (2014) The constrained application protocol (CoAP). In: IETF RFC 7252 (2014)Google Scholar
  10. 10.
    Tanenbaum AS, Wetherall DJ (2013) Computer networks: Pearson New, international edn. University of Hertfordshire, Pearson Higher EducationGoogle Scholar
  11. 11.
    Gomez C, Kim E, Kaspar D, Bormann C (2012) Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. In: IETF RFC 6606Google Scholar
  12. 12.
    Chowdhury AH, Ikram M, Cha H-S, Redwan H, Shams S, Kim K-H, Yoo S-W (2009) Route-over vs mesh-under routing in 6LoWPAN. In: Proceedings of the international conference on wireless communications and mobile computing: connecting the world wirelessly. ACM, pp 1208–1212Google Scholar
  13. 13.
    Yoo S, Lee J, Mulligan G (2007) Hierarchical routing over 6LoWPAN (HiLow), draft-daniel-6lowpan-hilow-hierarchical-routing-01. IETF network working group, Technical report, Internet-DraftGoogle Scholar
  14. 14.
    Kim K, Park SD, Montenegro G, Yoo S, Kushalnagar N (2007) 6LoWPAN Ad Hoc on-demand distance vector routing (LOAD). In: Internet Draft, draft-daniel-6lowpan-load-adhoc-routing-03, IETFGoogle Scholar
  15. 15.
    Kim K, Montenegro G, Park S, Chakeres I, Perkins C (2007) Dynamic MANET on-demand for 6LoWPAN (DYMO-low) routing. IETF, Internet-DraftGoogle Scholar
  16. 16.
    Winter T, Thubert P, Brandt A, Hui J, Kelsey R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. In: IETF, RFC 6550Google Scholar
  17. 17.
    Tsvetkov T (2011) RPL: IPv6 routing protocol for low power and lossy networks. In: Sensor nodes–operation, network and application (SN), vol 59, p 2Google Scholar
  18. 18.
    Gaddour O, Koubâa A, Baccour N, Abid M (2014) OF-FL: QoS-aware fuzzy logic objective function for the RPL routing protocol. In: Proceedings of 12th international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt). IEEE, pp 365–372Google Scholar
  19. 19.
    Zhang T, Li X (2014) Evaluating and analyzing the performance of RPL in Contiki. In: Proceedings of the 1st international workshop on mobile sensing, computing and communication. ACM, pp 19–24Google Scholar
  20. 20.
    Levis P, Clausen T, Hui J, Gnawali O, Ko J (2011) The trickle algorithm. In: Internet engineering task force, RFC 6206Google Scholar
  21. 21.
    Hui J, Thubert P (2011) Compression format for IPv6 datagrams over IEEE 802.15. 4-based networks. In: IETF RFC 6282Google Scholar
  22. 22.
    Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of IPv6 packets over IEEE 802.15.4 networks. In: IETF RFC 4944Google Scholar
  23. 23.
    Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) (2003) Specifications for low-rate wireless personal area aetworks (LR-WPANs). IEEE Standard 802(15):4Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technical Institute/QurnaSouthern Technical UniversityBasraIraq

Personalised recommendations