Advertisement

Developing a Platform for Supporting Clinical Pathways

Chapter
  • 267 Downloads

Abstract

Hospitals are facing high pressure to be profitable with decreasing funds in a stressed healthcare sector. This situation calls for methods to enable process management and intelligent methods in their daily work. However, traditional process intelligence systems work with logs of execution data that is generated by workflow engines controlling the execution of a process. But the nature of the treatment processes requires the doctors to work with a high freedom of action, rendering workflow engines unusable in this context. In this chapter, we describe a process intelligence approach to develop a platform for clinical pathways for hospitals without using workflow engines. Our approach is explained using a case in liver transplantation, but is generalizable on other clinical pathways as well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A. Alexandrou, I.E. Skitsas, G.N. Mentzas, A holistic environment for the design and execution of self-adaptive clinical pathways. IEEE Trans. Inf. Technol. Biomed. 15(1), 108–118 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Appel, S. Frischbier, T. Freudenreich, A. Buchmann, Event stream processing units in business processes, in Business Process Management (Springer, Heidelberg, 2013), pp. 187–202Google Scholar
  3. 3.
    S. Appel, P. Kleber, S. Frischbier, T. Freudenreich, A. Buchmann, Modeling and execution of event stream processing in business processes. Inf. Syst. 46, 140–156 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Buelow, M. Backmann, N. Herzberg, Th. Hille, A. Meyer, B. Ulm, T. Yin Wong, M. Weske, Monitoring of business processes with complex event processing, in 11th International Conference on Business Process Management Workshop on “Emerging Topics in BPM” (Springer, Cham, 2013), pp. 277–290Google Scholar
  5. 5.
    P. Burra, A. Burroughs, I. Graziadei, J. Pirenne, J.C. Valdecasas, P. Muiesan, D. Samuel, X. Forns, Easl clinical practice guidelines: liver transplantation. J. Hepatol. 64(2), 433–485 (2016)CrossRefGoogle Scholar
  6. 6.
    F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)CrossRefGoogle Scholar
  7. 7.
    J. Edelman, A. Grosskopf, M. Weske, L. Leifer, Tangible business process modeling: a new approach, in Proceedings of the 17th International Conference on Engineering Design, ICED, vol. 9 (2009), pp. 153–168Google Scholar
  8. 8.
    D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, M. Shan, Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)CrossRefGoogle Scholar
  9. 9.
    J.M. Grimshaw, I.T. Russell, Effect of clinical guidelines on medical practice: a systematic review of rigorous evaluations. Lancet 342(8883), 1317–1322 (1993)CrossRefGoogle Scholar
  10. 10.
    N. Herzberg, M. Kunze, A. Rogge-Solti, Towards process evaluation in non-automated process execution environments, in Proceedings of the 4th Central-European Workshop on Services and their Composition, ZEUS 2012 (2012), pp. 96–102. http://www.CEUR-WS.org
  11. 11.
    N. Herzberg, O. Khovalko, A. Baumgrass, M. Weske, Towards automating the detection of event sources, in Service-Oriented Computing - ICSOC 2013 Workshops. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2013)Google Scholar
  12. 12.
    N. Herzberg, A. Meyer, M. Weske, An event processing platform for business process management, in Enterprise Distributed Object Computing Conference (EDOC) (IEEE, Vancouver, 2013), pp. 107–116Google Scholar
  13. 13.
    N. Herzberg, K. Kirchner, M. Weske, Modeling and monitoring variability in hospital treatments: a scenario using CMMN, in Business Process Management Workshops. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2014), pp. 3–15CrossRefGoogle Scholar
  14. 14.
    N. Herzberg, A. Meyer, M. Weske, Improving business process intelligence by observing object state transitions. Data Knowl. Eng. 98, 144–164 (2015)CrossRefGoogle Scholar
  15. 15.
    Z. Hu, J.-S. Li, T.-S. Zhou, H.-Y. Yu, M. Suzuki, K. Araki, Ontology-based clinical pathways with semantic rules. J. Med. Syst. 36(4), 2203–2212 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Kirchner, N. Herzberg, A. Rogge-Solti, M. Weske, Embedding conformance checking in a process intelligence system in hospital environments, in Process Support and Knowledge Representation in Health Care (Springer, Heidelberg, 2013), pp. 126–139Google Scholar
  17. 17.
    K. Kirchner, Ch. Malessa, H. Scheuerlein, U. Settmacher, Experience from collaborative modeling of clinical pathways, in Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung (2014), pp. 13–24Google Scholar
  18. 18.
    K. Kirchner, H. Scheuerlein, C. Malessa, S. Krummnow, N. Herzberg, K. Krohn, M. Specht, U. Settmacher, Was ein klinischer Pfad im Krankenhaus bringt. Evaluation klinischer Pfade am Uniklinikum Jena am Beispiel des PIGE-Projekts. Chirurgische Allgemeine Zeitung 15(7–8), 475–478 (2014)Google Scholar
  19. 19.
    K. Kirchner, N. Herzberg, Ein CMMN-basierter Ansatz für Modellierung und Monitoring flexibler Prozesse am Beispiel von medizinischen Behandlungsabläufen, in Geschäftsprozesse. Von der Modellierung zur Implementierung (Springer, Berlin, 2017), pp. 127–145CrossRefGoogle Scholar
  20. 20.
    F. Kossak, V. Geist, An enhanced communication concept for business processes, in Enterprise Modelling and Information Systems Architectures (Gesellschaft für Informatik, Bonn, 2015)Google Scholar
  21. 21.
    H. Köth, K. Miller, M. Lein et al., Entwicklung und Effekte eines standortübergreifenden klinischen Behandlungspfades am Beispiel: “Laparoskopische Prostatektomie”. Pers. Med. 1(3), 173–180 (2009)Google Scholar
  22. 22.
    S. Kunz, T. Fickinger, J. Prescher, K. Spengler, Managing complex event processes with business process modeling notation, in International Workshop on Business Process Modeling Notation (Springer, Heidelberg, 2010), pp. 78–90Google Scholar
  23. 23.
    R. Mans, M. Schonenberg, M. Song, W.M.P. Aalst, P. Bakker, Application of process mining in healthcare—a case study in a Dutch hospital, in Biomedical Engineering Systems and Technologies: International Joint Conference, BIOSTEC’08 (2009), pp. 425–438Google Scholar
  24. 24.
    R. Mans, H. Reijers, M. van Genuchten, D. Wismeijer, Mining processes in dentistry, in Proceedings of the 2nd ACM SIGHIT Symposium on International Health Informatics (ACM, New York, 2012), pp. 379–388Google Scholar
  25. 25.
    A. Meyer, N. Herzberg, F. Puhlmann, M. Weske, Implementation framework for production case management: modeling and execution, in Enterprise Distributed Object Computing Conference (EDOC) (IEEE, Ulm, 2014), pp. 190–199Google Scholar
  26. 26.
    B. Mutschler, M. Reichert, Aktuelles Schlagwort: business process intelligence. EMISA Forum 26(1), 27–31 (2006)Google Scholar
  27. 27.
    M. Raetzell, M. Bauer, Standard operating procedures und klinische behandlungspfade, in OP-Management: praktisch und effizient (Springer, Heidelberg, 2006), pp. 187–198CrossRefGoogle Scholar
  28. 28.
    Á. Rebuge, D.R. Ferreira, Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Rogge-Solti, M. Weske, Enabling probabilistic process monitoring in non-automated environments, in Enterprise, Business-Process and Information Systems Modeling. LNBIP, vol. 113 (Springer, Berlin, 2012), pp. 226–240CrossRefGoogle Scholar
  30. 30.
    A. Rogge-Solti, N. Herzberg, L. Pufahl, Selecting event monitoring points for optimal prediction quality, in EMISA 2012 - Der Mensch im Zentrum der Modellierung, Vienna, Sept 13–14, 2012. Proceedings, ed. by S. Rinderle-Ma, M. Weske. Lecture Notes in Informatics, vol. 206 (Gesellschaft für Informatik, Bonn, 2012), pp. 39–52Google Scholar
  31. 31.
    Th. Rotter, L. Kinsman, E. James, A. Machotta, E.W. Steyerberg, The quality of the evidence base for clinical pathway effectiveness: room for improvement in the design of evaluation trials. BMC Med. Res. Methodol. 12(1), 80 (2012)Google Scholar
  32. 32.
    Th. Rotter, L. Kinsman, E. James, A. Machotta, J. Willis, P. Snow, J. Kugler, The effects of clinical pathways on professional practice, patient outcomes, length of stay, and hospital costs: Cochrane systematic review and meta-analysis. Eval. Health Prof. 35(1), 3–27 (2012)CrossRefGoogle Scholar
  33. 33.
    Th. Rotter, L. Kinsman, A. Machotta, F.-L. Zhao, T. van der Weijden, U. Ronellenfitsch, S.D. Scott, Clinical pathways for primary care: effects on professional practice, patient outcomes, and costs. The Cochrane Library (2013). https://doi.org//10.1002/14651858.CD010706
  34. 34.
    W.M.P. van der Aalst et al., Process mining manifesto, in 7th International Workshop on Business Process Intelligence (BPI 2011), Campus des Cézeaux, Clermont-Ferrand (Springer, Berlin, 2012), pp. 169–194Google Scholar
  35. 35.
    M. Weske, Business Process Management: Concepts, Languages, Architectures, 2nd edn. (Springer, Berlin, 2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University of DenmarkKgs. LyngbyDenmark
  2. 2.SAP SEDresdenGermany

Personalised recommendations