Computationally Volume-Hiding Structured Encryption

  • Seny KamaraEmail author
  • Tarik Moataz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11477)


We initiate the study of structured encryption schemes with computationally-secure leakage. Specifically, we focus on the design of volume-hiding encrypted multi-maps; that is, of encrypted multi-maps that hide the response length to computationally-bounded adversaries. We describe the first volume-hiding STE schemes that do not rely on naïve padding; that is, padding all tuples to the same length. Our first construction has efficient query complexity and storage but can be lossy. We show, however, that the information loss can be bounded with overwhelming probability for a large class of multi-maps (i.e., with lengths distributed according to a Zipf distribution). Our second construction is not lossy and can achieve storage overhead that is asymptotically better than naïve padding for Zipf-distributed multi-maps. We also show how to further improve the storage when the multi-map is highly concentrated in the sense that it has a large number of tuples with a large intersection. We achieve these results by leveraging computational assumptions; not just for encryption but, more interestingly, to hide the volumes themselves. Our first construction achieves this using a pseudo-random function whereas our second construction achieves this by relying on the conjectured hardness of the planted densest subgraph problem which is a planted variant of the well-studied densest subgraph problem. This assumption was previously used to design public-key encryptions schemes (Applebaum et al., STOC ’10) and to study the computational complexity of financial products (Arora et al., ICS ’10).


  1. 1.
    Amjad, G., Kamara, S., Moataz, T.: Breach-resistant structured encryption. IACR Cryptology ePrint Archive, 2018:195 (2018)Google Scholar
  2. 2.
    Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different assumptions. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 171–180. ACM (2010)Google Scholar
  3. 3.
    Arora, S., Barak, B., Brunnermeier, M., Ge, R.: Computational complexity and information asymmetry in financial products. Commun. ACM 54(5), 101–107 (2011)CrossRefGoogle Scholar
  4. 4.
    Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption: optimal locality in linear space via two-dimensional balanced allocations. In: STOC 2016, pp. 1101–1114. ACM, New York (2016)Google Scholar
  5. 5.
    Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 407–436. Springer, Cham (2018). Scholar
  6. 6.
    Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an o (n \(1/4\)) approximation for densest k-subgraph. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 201–210. ACM (2010)Google Scholar
  7. 7.
    Bost, R.: Sophos - forward secure searchable encryption. In: ACM CCS 2016 (2016)Google Scholar
  8. 8.
    Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable encryption from constrained cryptographic primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1465–1482. ACM (2017)Google Scholar
  9. 9.
    Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against searchable encryption. In: ACM CCS 2015, pp. 668–679. ACM (2015)Google Scholar
  10. 10.
    Cash, D., et al.: Dynamic searchable encryption in very-large databases: data structures and implementation. In NDSS 2014 (2014)Google Scholar
  11. 11.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). Scholar
  12. 12.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). Scholar
  13. 13.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. Technical Report 2011/010.pdf, IACR Cryptology ePrint Archive (2010)Google Scholar
  14. 14.
    Chaudhuri, S., Church, K.W., König, A.C., Sui, L.: Heavy-tailed distributions and multi-keyword queries. In: ACM SIGIR (2007)Google Scholar
  15. 15.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: CCS 2006 (2006)Google Scholar
  16. 16.
    Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with optimal locality: achieving sublogarithmic read efficiency. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 371–406. Springer, Cham (2018). Scholar
  17. 17.
    Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A., Garofalakis, M.: Practical private range search revisited. In: Proceedings of the 2016 International Conference on Management of Data, pp. 185–198. ACM (2016)Google Scholar
  18. 18.
    Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality. In: SIGMOD 2017 (2017)Google Scholar
  19. 19.
    Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable encryption with forward privacy. Proc. Priv. Enhancing Technol. 2018(1), 5–20 (2018)CrossRefGoogle Scholar
  20. 20.
    Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham (2015). Scholar
  21. 21.
    Fisch, B.A., et al.: Malicious-client security in blind seer: a scalable private DBMS. In: IEEE Symposium on Security and Privacy, pp. 395–410. IEEE (2015)Google Scholar
  22. 22.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Grubbs, P., Lacharité, M., Minaud, B., Paterson, K.G.: Pump up the volume: practical database reconstruction from volume leakage on range queries. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018, pp. 315–331. ACM (2018)Google Scholar
  24. 24.
    Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable encryption: ramification, attack and mitigation. In: NDSS 2012 (2012)Google Scholar
  25. 25.
    Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 94–124. Springer, Cham (2017). Scholar
  26. 26.
    Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 149–180. Springer, Cham (2018). Scholar
  27. 27.
    Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakage suppression. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 339–370. Springer, Cham (2018). Scholar
  28. 28.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). Scholar
  29. 29.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: ACM CCS 2012 (2012)Google Scholar
  30. 30.
    Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Generic attacks on secure outsourced databases. In: ACM Conference on Computer and Communications Security (CCS 2016) (2016)Google Scholar
  31. 31.
    Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: Accessing data while preserving privacy. CoRR, abs/1706.01552 (2017)Google Scholar
  32. 32.
    Lacharité, M.-S., Minaud, B., Paterson, K.G.: Improved reconstruction attacks on encrypted data using range query leakage. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 297–314. IEEE (2018)Google Scholar
  33. 33.
    Meng, X., Kamara, S., Nissim, K., Kollios, G.: GRECS: graph encryption for approximate shortest distance queries. In: CCS 15 (2015)Google Scholar
  34. 34.
    Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions of indexes by improving locality. Cryptology ePrint Archive, Report 2016/830 (2016).
  35. 35.
    Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving encrypted databases. In: ACM Conference on Computer and Communications Security (CCS), CCS 2015, pp. 644–655. ACM (2015)Google Scholar
  36. 36.
    Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via blind storage. In: IEEE Symposium on Security and Privacy (S&P 2014) (2014)Google Scholar
  37. 37.
    Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 359–374. IEEE (2014)Google Scholar
  38. 38.
    Poddar, R., Boelter, T., Popa, R.A.: Arx: a strongly encrypted database system. Technical Report 2016/591Google Scholar
  39. 39.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted data. In: IEEE S&P, pp. 44–55. IEEE Computer Society (2000)Google Scholar
  40. 40.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS 2014 (2014)Google Scholar
  41. 41.
    Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In: CCS (2013)Google Scholar
  42. 42.
    Zhang, Y., O’Neill, A., Sherr, M., Zhou, W.: Privacy-preserving network provenance. PVLDB 10(11), 1550–1561 (2017)Google Scholar
  43. 43.
    Zipf, G.K.: The Psycho-Biology of Language (1935)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA

Personalised recommendations