Advertisement

Two Round Information-Theoretic MPC with Malicious Security

  • Prabhanjan AnanthEmail author
  • Arka Rai Choudhuri
  • Aarushi Goel
  • Abhishek Jain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11477)

Abstract

We provide the first constructions of two round information-theoretic (IT) secure multiparty computation (MPC) protocols in the plain model that tolerate any \(t<n/2\) malicious corruptions. Our protocols satisfy the strongest achievable standard notions of security in two rounds in different communication models.

Previously, IT-MPC protocols in the plain model either required a larger number of rounds, or a smaller minority of corruptions.

Notes

Acknowledgments

The last three authors were supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213, and a subaward from NSF CNS-1414023.

References

  1. 1.
    Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II. LNCS, vol. 10992, pp. 395–424. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_14CrossRefGoogle Scholar
  2. 2.
    Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic MPC with malicious security. IACR Cryptology ePrint Archive 2018, 1078 (2018). https://eprint.iacr.org/2018/1078
  3. 3.
    Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two rounds. In: 16th International Conference on Theory of Cryptography, TCC 2018 (2018). https://eprint.iacr.org/2018/894
  4. 4.
    Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-complexity of malicious MPC (2019). https://eprint.iacr.org/2019/200
  5. 5.
    Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_16CrossRefGoogle Scholar
  6. 6.
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Rudnicki, P. (ed.) 8th ACM Symposium Annual on Principles of Distributed Computing, Edmonton, Alberta, Canada, 14–16 August 1989, pp. 201–209. Association for Computing Machinery (1989)Google Scholar
  7. 7.
    Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_49CrossRefGoogle Scholar
  8. 8.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 14–16 May 1990, pp. 503–513. ACM Press (1990)Google Scholar
  9. 9.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May 1988, pp. 1–10. ACM Press (1988)Google Scholar
  10. 10.
    Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled interactive circuits. Technical report (2018)Google Scholar
  11. 11.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 14–17 October 2001, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  12. 12.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_5CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: The spymasters double-agent problem. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 591–602. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_52CrossRefGoogle Scholar
  14. 14.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 2–4 May 1988, pp. 11–19. ACM Press (1988)Google Scholar
  15. 15.
    Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_7CrossRefGoogle Scholar
  16. 16.
    Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_23CrossRefGoogle Scholar
  17. 17.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada, 23–25 May 1994, pp. 554–563. ACM Press (1994)Google Scholar
  18. 18.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf. Process. Lett. 14(4), 183–186 (1982).  https://doi.org/10.1016/0020-0190(82)90033-3MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: 16th International Conference on Theory of Cryptography, TCC 2018 (2018). https://eprint.iacr.org/2018/909
  20. 20.
    Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation minimizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_10CrossRefGoogle Scholar
  21. 21.
    Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 588–599. IEEE (2017)Google Scholar
  22. 22.
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16CrossRefGoogle Scholar
  23. 23.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on Theory of Computing, Crete, Greece, 6–8 July 2001, pp. 580–589. ACM Press (2001)Google Scholar
  24. 24.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_12CrossRefGoogle Scholar
  25. 25.
    Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  26. 26.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, New York City, NY, USA, 25–27 May 1987, pp. 218–229. ACM Press (1987)Google Scholar
  27. 27.
    Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J. Cryptol. 18(3), 247–287 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_8CrossRefGoogle Scholar
  29. 29.
    Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure computation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. Part II. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_18CrossRefGoogle Scholar
  30. 30.
    Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Proceedings of Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-Gan, Israel, 17–19 June 1997, pp. 174–184 (1997).  https://doi.org/10.1109/ISTCS.1997.595170
  31. 31.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000, pp. 294–304. IEEE Computer Society Press (2000)Google Scholar
  32. 32.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45465-9_22CrossRefGoogle Scholar
  33. 33.
    Ishai, Y., Kushilevitz, E.: On the hardness of information-theoretic multiparty computation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 439–455. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_26CrossRefGoogle Scholar
  34. 34.
    Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_31CrossRefGoogle Scholar
  35. 35.
    Patra, A., Ravi, D.: On the exact round complexity of secure three-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. Part II. LNCS, vol. 10992, pp. 425–458. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_15CrossRefGoogle Scholar
  36. 36.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 15–17 May 1989, pp. 73–85. ACM Press (1989)Google Scholar
  37. 37.
    Yao, A.C.C.: How to generate and exchange secrets. In: 1986 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Prabhanjan Ananth
    • 1
    Email author
  • Arka Rai Choudhuri
    • 2
  • Aarushi Goel
    • 2
  • Abhishek Jain
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations