Advertisement

A Quantum-Proof Non-malleable Extractor

With Application to Privacy Amplification Against Active Quantum Adversaries
  • Divesh AggarwalEmail author
  • Kai-Min Chung
  • Han-Hsuan LinEmail author
  • Thomas Vidick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11477)

Abstract

In privacy amplification, two mutually trusted parties aim to amplify the secrecy of an initial shared secret X in order to establish a shared private key K by exchanging messages over an insecure communication channel. If the channel is authenticated the task can be solved in a single round of communication using a strong randomness extractor; choosing a quantum-proof extractor allows one to establish security against quantum adversaries.

In the case that the channel is not authenticated, this simple solution is no longer secure. Nevertheless, Dodis and Wichs (STOC’09) showed that the problem can be solved in two rounds of communication using a non-malleable extractor, a stronger pseudo-random construction than a strong extractor.

We give the first construction of a non-malleable extractor that is secure against quantum adversaries. The extractor is based on a construction by Li (FOCS’12), and is able to extract from source of min-entropy rates larger than 1 / 2. Combining this construction with a quantum-proof variant of the reduction of Dodis and Wichs, due to Cohen and Vidick (unpublished) we obtain the first privacy amplification protocol secure against active quantum adversaries.

References

  1. 1.
    Aggarwal, D., Chung, K.-M., Lin, H.-H., Vidick, T.: A quantum-proof non-malleable extractor, with application to privacy amplification against active quantum adversaries. arXiv preprint arXiv:1710.00557 (2017)
  2. 2.
    Aggarwal, D., Dodis, Y., Jafargholi, Z., Miles, E., Reyzin, L.: Amplifying privacy in privacy amplification. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. Part II. LNCS, vol. 8617, pp. 183–198. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_11CrossRefzbMATHGoogle Scholar
  3. 3.
    Aggarwal, D., Hosseini, K., Lovett, S.: Affine-malleable extractors, spectrum doubling, and application to privacy amplification. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 2913–2917. IEEE (2016)Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-1-4612-0653-8CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouman, N.J., Fehr, S.: Secure authentication from a weak key, without leaking information. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 246–265. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_15CrossRefGoogle Scholar
  8. 8.
    Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification with asymptotically optimal entropy loss. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 785–794 (2010)Google Scholar
  9. 9.
    Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. arXiv preprint arXiv:1505.00107 (2015)
  10. 10.
    Chung, K.-M., Li, X., Wu, X.: Multi-source randomness extractors against quantum side information, and their applications (2014)Google Scholar
  11. 11.
    Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 61–74. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49208-9_4CrossRefzbMATHGoogle Scholar
  12. 12.
    Cohen, G.: Non-malleable extractors - new tools and improved constructions. Electron. Colloq. Comput. Complex. (ECCC) 22, 183 (2015)Google Scholar
  13. 13.
    Cohen, G., Raz, R., Segev, G.: Non-malleable extractors with short seeds and applications to privacy amplification. In: 2012 IEEE 27th Annual Conference on Computational Complexity (CCC), pp. 298–308. IEEE (2012)Google Scholar
  14. 14.
    Cohen, G., Vidick, T.: Privacy amplification against active quantum adversaries (2016)Google Scholar
  15. 15.
    De, A., Portmann, C., Vidick, T., Renner, R.: Trevisan’s extractor in the presence of quantum side information. SIAM J. Comput. 41(4), 915–940 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. IEEE Trans. Inf. Theory 58(9), 6207–6222 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification and nonmalleable extractors via character sums. SIAM J. Comput. 43(2), 800–830 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 293–302. IEEE (2008)Google Scholar
  19. 19.
    Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, pp. 601–610. ACM (2009)Google Scholar
  20. 20.
    Dodis, Y., Yu, Y.: Overcoming weak expectations. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 1–22. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_1CrossRefGoogle Scholar
  21. 21.
    Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., De Wolf, R.: Exponential separations for one-way quantum communication complexity, with applications to cryptography. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 516–525. ACM (2007)Google Scholar
  22. 22.
    Kasher, R., Kempe, J.: Two-source extractors secure against quantum adversaries. Theory Comput. 8(1), 461–486 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Koenig, R., Renner, R., Schaffner, C.: The operational meaning of min-and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lee, C.-J., Lu, C.-J., Tsai, S.-C., Tzeng, W.-G.: Extracting randomness from multiple independent sources. IEEE Trans. Inf. Theory 51(6), 2224–2227 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, X.: Design extractors, non-malleable condensers and privacy amplification. In: Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, 19–22 May 2012, pp. 837–854 (2012)Google Scholar
  26. 26.
    Li, X.: Non-malleable condensers for arbitrary min-entropy, and almost optimal protocols for privacy amplification. CoRR, abs/1211.0651 (2012)Google Scholar
  27. 27.
    Li, X.: Non-malleable extractors, two-source extractors and privacy amplification. In: FOCS, pp. 688–697 (2012)Google Scholar
  28. 28.
    Li, X.: Non-malleable condensers for arbitrary min-entropy, and almost optimal protocols for privacy amplification. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. Part I. LNCS, vol. 9014, pp. 502–531. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_21CrossRefGoogle Scholar
  29. 29.
    Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 1144–1156 (2017)Google Scholar
  30. 30.
    Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. Cryptol. 5(1), 53–66 (1992)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052244CrossRefGoogle Scholar
  32. 32.
    Nayak, A., Salzman, J.: Limits on the ability of quantum states to convey classical messages. J. ACM (JACM) 53(1), 184–206 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–53 (1996)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_22CrossRefGoogle Scholar
  35. 35.
    Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_5CrossRefGoogle Scholar
  36. 36.
    Tomamichel, M., Schaffner, C., Smith, A.D., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 5524–5535 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Vitanov, A., Dupuis, F., Tomamichel, M., Renner, R.: Chain rules for smooth min-and max-entropies. IEEE Trans. Inf. Theory 59(5), 2603–2612 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Center of Quantum Technologies, and Department of Computer ScienceNUSSingaporeSingapore
  2. 2.Institute of Information ScienceAcademia SinicaTaipeiTaiwan
  3. 3.Department of Computer ScienceThe University of Texas at AustinAustinUSA
  4. 4.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations