Sum-of-Squares Meets Program Obfuscation, Revisited

  • Boaz BarakEmail author
  • Samuel B. Hopkins
  • Aayush Jain
  • Pravesh Kothari
  • Amit Sahai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11476)


We develop attacks on the security of variants of pseudo-random generators computed by quadratic polynomials. In particular we give a general condition for breaking the one-way property of mappings where every output is a quadratic polynomial (over the reals) of the input. As a corollary, we break the degree-2 candidates for security assumptions recently proposed for constructing indistinguishability obfuscation by Ananth, Jain and Sahai (ePrint 2018) and Agrawal (ePrint 2018). We present conjectures that would imply our attacks extend to a wider variety of instances, and in particular offer experimental evidence that they break assumption of Lin-Matt (ePrint 2018).

Our algorithms use semidefinite programming, and in particular, results on low-rank recovery (Recht, Fazel, Parrilo 2007) and matrix completion (Gross 2009).



Boaz Barak was supported by NSF awards CCF 1565264 and CNS 1618026 and a Simons Investigator Fellowship. Samuel B. Hopkins was supported by a Miller Postdoctoral Fellowship and NSF award CCF 1408673. Pravesh Kothari was supported in part by Ma fellowship from the Schmidt Foundation and Avi Wigderson’s NSF award CCF-1412958. Amit Sahai and Aayush Jain were supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. Aayush Jain was also supported by Google PhD Fellowship 2018, in the area of Privacy and Security. This material is based upon work supported by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C- 0205. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, the U.S. Government or Google.

Supplementary material


  1. 1.
    Agrawal, S.: New methods for indistinguishability obfuscation: Bootstrapping and instantiation. IACR Cryptology ePrint Archive 2018, 633 (2018).
  2. 2.
    Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. IACR Cryptology ePrint Archive 2018, 615 (2018).
  3. 3.
    Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017). Scholar
  4. 4.
    Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: sum-of-squares meets program obfuscation). In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 649–679. Springer, Cham (2018). Scholar
  5. 5.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324, 71–90 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014).
  7. 7.
    Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report 2015/845 (2015).
  8. 8.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). Scholar
  9. 9.
    Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new clt multilinear maps. Cryptology ePrint Archive, Report 2015/934 (2015).
  10. 10.
    Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). Scholar
  11. 11.
    Daniely, A., Linial, N., Shalev-Shwartz, S.: From average case complexity to improper learning complexity. In: STOC, pp. 441–448. ACM (2014)Google Scholar
  12. 12.
    Feige, U.: Relations between average case complexity and approximation complexity. In: STOC, pp. 534–543. ACM (2002)Google Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October, 2013, Berkeley, pp. 40–49 (2013)Google Scholar
  15. 15.
    Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory 57(3), 1548–1566 (2011). Scholar
  17. 17.
    Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptol. ePrint Archive 2015, 866 (2015)Google Scholar
  18. 18.
    Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptol. ePrint Archive 2015, 301 (2015)zbMATHGoogle Scholar
  19. 19.
    Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). Scholar
  20. 20.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). Scholar
  21. 21.
    Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018).
  22. 22.
    Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and block-wise local PRGs. Cryptology ePrint Archive, Report 2017/250 (2017).
  23. 23.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016, Hyatt Regency, New Brunswick, pp. 11–20 (2016)Google Scholar
  24. 24.
    Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local prgs with applications to indistinguishability obfuscation. IACR Cryptology ePrint Archive 2017, 301 (2017).
  25. 25.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). Scholar
  26. 26.
    Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the integers. Cryptology ePrint Archive, Report 2015/941 (2015).
  27. 27.
    Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions oflinear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010). Scholar
  29. 29.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, New York, May 31 - June 03, 2014, pp. 475–484 (2014)Google Scholar
  30. 30.
    Schoenebeck, G.: Linear level lasserre lower bounds for certain k-CSPs. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–28 October 2008, Philadelphia, pp. 593–602 (2008)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Boaz Barak
    • 1
    Email author
  • Samuel B. Hopkins
    • 2
  • Aayush Jain
    • 3
  • Pravesh Kothari
    • 4
  • Amit Sahai
    • 3
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.University of CaliforniaBerkeleyUSA
  3. 3.University of CaliforniaLos AngelesUSA
  4. 4.Princeton University and the Institute for Advanced StudyPrincetonUSA

Personalised recommendations