Advertisement

(R)CCA Secure Updatable Encryption with Integrity Protection

  • Michael KlooßEmail author
  • Anja Lehmann
  • Andy Rupp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11476)

Abstract

An updatable encryption scheme allows a data host to update ciphertexts of a client from an old to a new key, given so-called update tokens from the client. Rotation of the encryption key is a common requirement in practice in order to mitigate the impact of key compromises over time. There are two incarnations of updatable encryption: One is ciphertext-dependent, i.e. the data owner has to (partially) download all of his data and derive a dedicated token per ciphertext. Everspaugh et al. (CRYPTO’17) proposed CCA and CTXT secure schemes in this setting. The other, more convenient variant is ciphertext-independent, i.e., it allows a single token to update all ciphertexts. However, so far, the broader functionality of tokens in this setting comes at the price of considerably weaker security: the existing schemes by Boneh et al. (CRYPTO’13) and Lehmann and Tackmann (EUROCRYPT’18) only achieve CPA security and provide no integrity protection. Arguably, when targeting the scenario of outsourcing data to an untrusted host, plaintext integrity should be a minimal security requirement. Otherwise, the data host may alter or inject ciphertexts arbitrarily. Indeed, the schemes from BLMR13 and LT18 suffer from this weakness, and even EPRS17 only provides integrity against adversaries which cannot arbitrarily inject ciphertexts. In this work, we provide the first ciphertext-independent updatable encryption schemes with security beyond CPA, in particular providing strong integrity protection. Our constructions and security proofs of updatable encryption schemes are surprisingly modular. We give a generic transformation that allows key-rotation and confidentiality/integrity of the scheme to be treated almost separately, i.e., security of the updatable scheme is derived from simple properties of its static building blocks. An interesting side effect of our generic approach is that it immediately implies the unlinkability of ciphertext updates that was introduced as an essential additional property of updatable encryption by EPRS17 and LT18.

Notes

Acknowledgments

We thank Kenny Paterson for fruitful discussions at early stages of this work. We also thank the reviewers for helpful suggestions. The first author is supported by the German Federal Ministry of Education and Research within the framework of the project “Sicherheit kritischer Infrastrukturen (SKI)” in the Competence Center for Applied Security Technology (KASTEL). The second author was supported by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 786725 (OLYMPUS). The third author is supported by DFG grant RU 1664/3-1 and KASTEL.

References

  1. 1.
    Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_23CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. Cryptology ePrint Archive, Report 2015/220 (2015). http://eprint.iacr.org/2015/220
  3. 3.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_33CrossRefGoogle Scholar
  4. 4.
    Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. Cryptology ePrint Archive, Report 2012/012 (2012). http://eprint.iacr.org/2012/012CrossRefGoogle Scholar
  5. 5.
    Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_36CrossRefGoogle Scholar
  6. 6.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8CrossRefGoogle Scholar
  7. 7.
    Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenticated encryption. Cryptology ePrint Archive, Report 2017/527 (2017). http://eprint.iacr.org/2017/527
  8. 8.
    Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 98–129. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_4CrossRefGoogle Scholar
  9. 9.
    Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_14CrossRefGoogle Scholar
  10. 10.
    Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-encryption. Cryptology ePrint Archive, Report 2018/426 (2018). https://eprint.iacr.org/2018/426
  11. 11.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  12. 12.
    Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5), 1193–1232 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_35CrossRefGoogle Scholar
  14. 14.
    Jarecki, S., Krawczyk, H., Resch, J.: Threshold partially-oblivious PRFs with applications to key management. Cryptology ePrint Archive, Report 2018/733 (2018). https://eprint.iacr.org/2018/733
  15. 15.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_14CrossRefGoogle Scholar
  16. 16.
    Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with integrity protection. IACR ePrint 2019/222. http://eprint.iacr.org/2019/222
  17. 17.
    Lehmann, A., Tackmann, B.: Updatable Encryption with Post-Compromise Security. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 685–716. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78372-7_22CrossRefGoogle Scholar
  18. 18.
    Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_15CrossRefGoogle Scholar
  19. 19.
    Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_23CrossRefGoogle Scholar
  20. 20.
    Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: 22nd ACM STOC, May 1990Google Scholar
  21. 21.
    PCI Security Standards Council: Requirements and security assessment procedures. PCI DSS v3.2 (2016)Google Scholar
  22. 22.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS, October 1999Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Karlsruhe Institute for TechnologyKarlsruheGermany
  2. 2.IBM Research – ZurichRüschlikonSwitzerland

Personalised recommendations