Advertisement

Beyond Birthday Bound Secure MAC in Faulty Nonce Model

  • Avijit DuttaEmail author
  • Mridul Nandi
  • Suprita Talnikar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11476)

Abstract

Encrypt-then-MAC (EtM) is a popular mode for authenticated encryption (AE). Unfortunately, almost all designs following the EtM paradigm, including the AE suites for TLS, are vulnerable against nonce misuse. A single repetition of the nonce value reveals the hash key, leading to a universal forgery attack. There are only two authenticated encryption schemes following the EtM paradigm which can resist nonce misuse attacks, the GCM-RUP (CRYPTO-17) and the \(\mathsf {GCM/2}^{+} \) (INSCRYPT-12). However, they are secure only up to the birthday bound in the nonce respecting setting, resulting in a restriction on the data limit for a single key. In this paper we show that nEHtM, a nonce-based variant of EHtM (FSE-10) constructed using a block cipher, has a beyond birthday bound (BBB) unforgeable security that gracefully degrades under nonce misuse. We combine nEHtM with the CENC (FSE-06) mode of encryption using the EtM paradigm to realize a nonce-based AE, CWC+. CWC+ is very close (requiring only a few more xor operations) to the CWC AE scheme (FSE-04) and it not only provides BBB security but also gracefully degrading security on nonce misuse.

Keywords

Graceful security Faulty nonce Mirror theory Extended mirror theory Expectation method CWC GCM 

Notes

Acknowledgements

Authors would like to thank all the reviewers of Eurocrypt, 2019.

References

  1. 1.
    CAESAR: Competition for authenticated encryption: Security, applicability, and robustnessGoogle Scholar
  2. 2.
    Joux, A.: Comments on the draft GCM specification - authentication failures in NIST version of GCMGoogle Scholar
  3. 3.
    Aoki, K., Yasuda, K.: The security and performance of “GCM" when short multiplications are used instead. In: Kutyłowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 225–245. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38519-3_15CrossRefzbMATHGoogle Scholar
  4. 4.
    Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness with minimal modifications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 3–33. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_1CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_41CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_10CrossRefzbMATHGoogle Scholar
  7. 7.
    Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg (2005).  https://doi.org/10.1007/11502760_3CrossRefGoogle Scholar
  8. 8.
    Bhattacharya, S., Nandi, M.: Revisiting variable output length XOR pseudorandom function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018)Google Scholar
  9. 9.
    Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting adversaries: practical forgery attacks on GCM in TLS. In: 10th USENIX Workshop on Offensive Technologies WOOT 16, Austin, TX, USA, 8–9 August 2016Google Scholar
  10. 10.
    Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_18CrossRefGoogle Scholar
  11. 11.
    Smith, B.: Pull request: Removing the AEAD explicit IV. mail to IETF TLS working group (2015)Google Scholar
  12. 12.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_28CrossRefGoogle Scholar
  13. 13.
    Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_5CrossRefGoogle Scholar
  14. 14.
    Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: a paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol. 2018(3), 36–92 (2018)Google Scholar
  15. 15.
    Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of PMAC\(\_\)plus. IACR Trans. Symmetric Cryptol. 2017(4), 268–305 (2017)Google Scholar
  16. 16.
    Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_21CrossRefGoogle Scholar
  17. 17.
    Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? to make a single-key beyond birthday secure nonce-based MAC. Cryptology ePrint Archive, Report 2018/500 (2018)Google Scholar
  18. 18.
    Dutta, A., Jha, A., Nandi, M.: Tight security analysis of EHtM MAC. IACR Trans. Symmetric Cryptol. 2017(3), 130–150 (2017)Google Scholar
  19. 19.
    Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty nonce model. Cryptology ePrint Archive, Report 2019/127 (2019)Google Scholar
  20. 20.
    Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_1CrossRefGoogle Scholar
  21. 21.
    Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 381–411. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_13CrossRefGoogle Scholar
  22. 22.
    Iwata, T.: New blockcipher modes of operation with beyond the birthday bound security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer, Heidelberg (2006).  https://doi.org/10.1007/11799313_20CrossRefGoogle Scholar
  23. 23.
    Iwata, T.: Authenticated encryption mode for beyond the birthday bound security. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68164-9_9CrossRefGoogle Scholar
  24. 24.
    Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional authenticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 408–426. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25937-4_26CrossRefzbMATHGoogle Scholar
  25. 25.
    Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_2CrossRefGoogle Scholar
  26. 26.
    McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30556-9_27CrossRefGoogle Scholar
  27. 27.
    Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal security using mirror theory. Cryptology ePrint Archive, Report 2017/473 (2017)Google Scholar
  28. 28.
    Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards optimal security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63697-9_19CrossRefGoogle Scholar
  29. 29.
    Minematsu, K.: How to Thwart birthday attacks against MACs via small randomness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 230–249. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13858-4_13CrossRefGoogle Scholar
  30. 30.
    Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher: extending FSE 2009 proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 391–412. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25516-8_24CrossRefGoogle Scholar
  31. 31.
    Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_15CrossRefGoogle Scholar
  32. 32.
    Nandi, M.: Birthday attack on dual EWCDM. Cryptology ePrint Archive, Report 2017/579 (2017). https://eprint.iacr.org/2017/579
  33. 33.
    Patarin, J.: The “Coefficients H” Technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04159-4_21CrossRefGoogle Scholar
  34. 34.
    Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for cryptography. IACR Cryptology ePrint Archive, 2010:287 (2010)Google Scholar
  35. 35.
    Jacques, P.: Security in o(2\({}^{\text{n}}\)) for the xor of two random permutations – proof with the standard H technique. IACR Cryptology ePrint Archive, 2013:368 (2013)Google Scholar
  36. 36.
    Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive, 2016:702 (2016)Google Scholar
  37. 37.
    Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 33–63. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_2CrossRefzbMATHGoogle Scholar
  38. 38.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_2CrossRefGoogle Scholar
  39. 39.
    Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_24CrossRefGoogle Scholar
  40. 40.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang, P., Hu, H., Yuan, Q.: Close to optimally secure variants of GCM. Secur. Commun. Netw. 2018, 9715947:1–9715947:12 (2018)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Indian Statistical InstituteKolkataIndia

Personalised recommendations