Advertisement

DLCT: A New Tool for Differential-Linear Cryptanalysis

  • Achiya Bar-On
  • Orr DunkelmanEmail author
  • Nathan Keller
  • Ariel Weizman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11476)

Abstract

Differential cryptanalysis and linear cryptanalysis are the two best-known techniques for cryptanalysis of block ciphers. In 1994, Langford and Hellman introduced the differential-linear (DL) attack based on dividing the attacked cipher E into two subciphers \(E_0\) and \(E_1\) and combining a differential characteristic for \(E_0\) with a linear approximation for \(E_1\) into an attack on the entire cipher E. The DL technique was used to mount the best known attacks against numerous ciphers, including the AES finalist Serpent, ICEPOLE, COCONUT98, Chaskey, CTC2, and 8-round DES.

Several papers aimed at formalizing the DL attack, and formulating assumptions under which its complexity can be estimated accurately. These culminated in a recent work of Blondeau, Leander, and Nyberg (Journal of Cryptology, 2017) which obtained an accurate expression under the sole assumption that the two subciphers \(E_0\) and \(E_1\) are independent.

In this paper we show that in many cases, dependency between the two subcipher s significantly affects the complexity of the DL attack, and in particular, can be exploited by the adversary to make the attack more efficient. We present the Differential-Linear Connectivity Table (DLCT) which allows us to take into account the dependency between the two subciphers, and to choose the differential characteristic in \(E_0\) and the linear approximation in \(E_1\) in a way that takes advantage of this dependency. We then show that the DLCT can be constructed efficiently using the Fast Fourier Transform. Finally, we demonstrate the strength of the DLCT by using it to improve differential-linear attacks on ICEPOLE and on 8-round DES, and to explain published experimental results on Serpent and on the CAESAR finalist Ascon which did not comply with the standard differential-linear framework.

Notes

Acknowledgements

The research was partially supported by European Research Council under the ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. Orr Dunkelman was supported in part by the Israel Ministry of Science and Technology, the Center for Cyber, Law, and Policy in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office and by the Israeli Science Foundation through grant No. 880/18.

References

  1. 1.
    Anderson, R., Biham, E., Knudsen, L.R.: Serpent: a proposal for the advanced encryption standard. In: NIST AES Proposal (1998)Google Scholar
  2. 2.
    Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53008-5_5CrossRefGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_21CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear cryptanalysis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_16CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of Serpent. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39887-5_2CrossRefGoogle Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_24CrossRefGoogle Scholar
  7. 7.
    Biham, E., Dunkelman, O., Keller, N.: New combined attacks on block ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144. Springer, Heidelberg (2005).  https://doi.org/10.1007/11502760_9CrossRefGoogle Scholar
  8. 8.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Biryukov, A., De Cannière, C., Dellkrantz, G.: Cryptanalysis of Safer++. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 195–211. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_12CrossRefGoogle Scholar
  10. 10.
    Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 388–404. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_24CrossRefGoogle Scholar
  12. 12.
    Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic S-boxes. IACR Trans. Symmetric Cryptol. 3, 2018 (2018)Google Scholar
  13. 13.
    Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995).  https://doi.org/10.1007/BFb0053450CrossRefGoogle Scholar
  14. 14.
    Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_22CrossRefGoogle Scholar
  15. 15.
    Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76788-6_7CrossRefGoogle Scholar
  16. 16.
    The CAESAR committee: CAESAR: competition for authenticated encryption: security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.html
  17. 17.
    Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60590-8_21CrossRefGoogle Scholar
  18. 18.
    Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. Submission to the CAESAR competition (2014). http://ascon.iaik.tugraz.at
  19. 19.
    Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of Ascon. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 371–387. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_20CrossRefGoogle Scholar
  20. 20.
    Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89754-5_24CrossRefGoogle Scholar
  21. 21.
    Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Huang, T., Tjuawinata, I., Wu, H.: Differential-linear cryptanalysis of ICEPOLE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 243–263. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48116-5_12CrossRefGoogle Scholar
  23. 23.
    Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submission to the CAESAR competition (2016)Google Scholar
  24. 24.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and Serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44706-7_6CrossRefGoogle Scholar
  25. 25.
    Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks: theory and experimental analysis. IEEE Trans. Inf. Theory 58(7), 4948–4966 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_2CrossRefGoogle Scholar
  27. 27.
    Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48658-5_3CrossRefGoogle Scholar
  28. 28.
    Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_14CrossRefGoogle Scholar
  29. 29.
    Liu, Z., Gu, D., Zhang, J., Li, W.: Differential-multiple linear cryptanalysis. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 35–49. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16342-5_3CrossRefGoogle Scholar
  30. 30.
    Jiqiang, L.: A methodology for differential-linear cryptanalysis and its applications. Des. Codes Cryptogr. 77(1), 11–48 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_33CrossRefGoogle Scholar
  32. 32.
    Morawiecki, P., et al.: ICEPOLE: high-speed, hardware-oriented authenticated encryption. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 392–413. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44709-3_22CrossRefGoogle Scholar
  33. 33.
    Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory 57(4), 2517–2521 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  35. 35.
    US National Bureau of Standards. Data Encryption Standard, Federal Information Processing Standards publications no. 46 (1977)Google Scholar
  36. 36.
    US National Institute of Standards and Technology. Advanced Encryption Standard, Federal Information Processing Standards publications no. 197 (2001)Google Scholar
  37. 37.
    Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48519-8_12CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Achiya Bar-On
    • 1
  • Orr Dunkelman
    • 2
    Email author
  • Nathan Keller
    • 1
  • Ariel Weizman
    • 1
  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael
  2. 2.Computer Science DepartmentUniversity of HaifaHaifaIsrael

Personalised recommendations