Burkhardt JK, Zinn PO, Bozinov O, et al. Neurosurgical education in Europe and the United States of America. Neurosurg Rev. 2010;33(4):409–17.
PubMed
PubMed Central
CrossRef
Google Scholar
Schwab K. The fourth industrial revolution. New York: Crown Business, Crown Publishing Group; 2016.
Google Scholar
D’Andrea G, Trillo G, Picotti V, Raco A. Functional Magnetic Resonance Imaging (fMRI), pre-intraoperative tractography in neurosurgery: the experience of Sant’ Andrea Rome University Hospital. Acta Neurochir Suppl. 2017;124:241–50.
PubMed
CrossRef
Google Scholar
D’Andrea G, Familiari P, Di Lauro A, et al. Safe resection of gliomas of the dominant angular gyrus availing of preoperative FMRI and intraoperative DTI: preliminary series and surgical technique. World Neurosurg. 2016;87:627–39.
PubMed
CrossRef
Google Scholar
Nakagawa S, Murai Y, Matano F, et al. Evaluation video angiography of patency after vascular anastomosis using quantitative evaluation of visualization time in indocyanine green. World Neurosurg. 2018;110:e699–709.
PubMed
CrossRef
Google Scholar
Roessler K, Krawagna M, Dörfler A, et al. Essentials in intraoperative indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutively clipped aneurysms and review of the literature. Neurosurg Focus. 2014;36(2):E7.
PubMed
CrossRef
Google Scholar
Wright JM, Huang CL, Sharma R, et al. Cardiac standstill and circulatory flow arrest in surgical treatment of intracranial aneurysms: a historical review. Neurosurg Focus. 2014;36(4):E10.
PubMed
CrossRef
Google Scholar
Intarakhao P, Thiarawat P, Rezai Jahromi B, et al. Adenosine-induced cardiac arrest as an alternative to temporary clipping during intracranial aneurysm surgery. J Neurosurg. 2018;129(3):684–90.
PubMed
CrossRef
Google Scholar
Coelho G, Chaves TMF, Goes AF, et al. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst. 2017; https://doi.org/10.1007/s00381-017-3616-6.
Govsa F, Karakas AB, Ozer MA, Eraslan C. Development of life-size patient-specific 3D-printed Dural venous models for preoperative planning. World Neurosurg. 2018;110:e141–9.
PubMed
CrossRef
Google Scholar
Choque-Velasquez J, Colasanti R, Collan J, et al. Virtual reality glasses and “Eye-hands blind technique” for microsurgical training in Neurosurgery. World Neurosurg. 2018;112:126–30. pii: S1878–8750(18)30110–4.
PubMed
CrossRef
Google Scholar
Gmeiner M, Dirnberger J, Fenz W, et al. Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg. 2018;112:e313–23. pii: S1878–8750(18)30082–2.
PubMed
CrossRef
Google Scholar
Rhoton AL Jr. Cranial anatomy and surgical approaches. The Congress of Neurological Surgeons ed. Schaumberg; 2003.
Google Scholar
Tang Y, Sun W, Toga AW, et al. A probabilistic atlas of human brainstem pathways based on connectome imaging data. NeuroImage. 2018;169:227–39.
PubMed
CrossRef
Google Scholar
Abdallah CG, Averill LA, Collins KA, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42(6):1210–9.
CAS
PubMed
CrossRef
Google Scholar
Li T, Wang Q, Zhang J, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2017;43(2):436–48.
PubMed
Google Scholar
Lu FM, Dai J, Couto TA, et al. Diffusion tensor imaging tractography reveals disrupted white matter structural connectivity network in healthy adults with insomnia symptoms. Front Hum Neurosci. 2017;11:583.
PubMed
PubMed Central
CrossRef
Google Scholar
Ji GJ, Yu Y, Miao HH, Wang ZJ, Tang YL, Liao W. Decreased network efficiency in benign epilepsy with centrotemporal spikes. Radiology. 2017;283(1):186–94.
PubMed
CrossRef
Google Scholar
Whelan CD, Altmann A, Botía JA, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391–408.
PubMed
PubMed Central
CrossRef
Google Scholar
T Vu A, Jamison K, Glasser MF, et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. NeuroImage. 2017;154:23–32.
PubMed
CrossRef
Google Scholar
Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.
PubMed
CrossRef
Google Scholar
Martinez-Ramirez D, Jimenez-Shahed J, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol. 2018;75(3):353–9. https://doi.org/10.1001/jamaneurol.2017.4317.
PubMed
PubMed Central
CrossRef
Google Scholar
Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord. 2018;33(1):36–47.
PubMed
CrossRef
Google Scholar
Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.
PubMed
CrossRef
Google Scholar
Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 2018;11(1):3–28.
PubMed
CrossRef
Google Scholar
Beckett LA, Harvey DJ, Gamst A, et al. The Alzheimer’s disease neuroimaging initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010;6(3):257–64.
PubMed
PubMed Central
CrossRef
Google Scholar
Ponce FA, Asaad WF, Foote KD, et al. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: surgical safety in the advance trial. J Neurosurg. 2016;125(1):75–84.
PubMed
CrossRef
Google Scholar
Dalton B, Bartholdy S, Campbell IC, Schmidt U. Neurostimulation in clinical and sub-clinical eating disorders: a systematic update of the literature. Curr Neuropharmacol. 2018;16(8):1174–92. https://doi.org/10.2174/1570159X16666180108111532.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lipsman N, Lam E, Volpini M, et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry. 2017;4(4):285–94.
PubMed
CrossRef
Google Scholar
de Oliveira Souza C, de Lima-Pardini AC, Coelho DB, et al. Peduncolopontine DBS improves balance in progressive supranuclear palsy: instrumental analysis. Clin Neurophysiol. 2016;127(11):3470–1.
PubMed
CrossRef
Google Scholar
Thevathasan W, Debu B, Aziz T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20.
PubMed
CrossRef
Google Scholar
Lizarraga KJ, Gorgulho A, Chen W, De Salles AA. Molecular imaging of movement disorders. World J Radiol. 2016;8(3):226–39.
PubMed
PubMed Central
CrossRef
Google Scholar
Spetzler RF, Zabramski JM, McDougall CG, et al. Analysis of saccular aneurysms in the Barrow Ruptured Aneurysm Trial. J Neurosurg. 2018;128(1):120–5.
PubMed
CrossRef
Google Scholar
Spetzler RF, McDougall CG, Zabramski JM, et al. The Barrow Ruptured Aneurysm Trial: 6-year results. J Neurosurg. 2015;123(3):609–17.
PubMed
CrossRef
Google Scholar
Bijlenga P, Gondar R, Schilling S, et al. PHASES score for the management of intracranial aneurysm a cross-sectional population-based retrospective study. Stroke. 2017;48:1–8.
CrossRef
Google Scholar
Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.
CrossRef
PubMed
Google Scholar
Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22(8):1534–42.
CAS
PubMed
PubMed Central
Google Scholar
Bal S, Bhatia R, Menon BK, et al. Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke. Int J Stroke. 2015;10(1):55–60.
PubMed
CrossRef
Google Scholar
Fransen PS, Beumer D, Berkhemer OA, et al. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial. Trials. 2014;15:343.
PubMed
PubMed Central
CrossRef
Google Scholar
Goyal M, Dermchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.
CAS
PubMed
CrossRef
Google Scholar
Saver JL, Goyal M, Bonafe A, et al. Stent-retriever Thrombectomy after intravenous t-PA, vs. t-PA alone in acute stroke. N Engl J Med. 2015;372:2285–95.
CAS
PubMed
CrossRef
Google Scholar
Campbell BCV, Mitchell PJ, Kleinig PJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.
CAS
PubMed
CrossRef
Google Scholar
Jovin TG, Bonafe A, Cobo E, et al. Thrombectomy within 8 hours onset of acute stroke. N Engl J Med. 2015;372:2296–306.
CAS
CrossRef
PubMed
Google Scholar
Nogueira RG, Jadhav DC, Haussen DC, et al. Thrombectomy 6-24 hours after stroke with mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.
PubMed
CrossRef
Google Scholar
Albers GW, Kemp MS, Christensen JP, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18. https://doi.org/10.1056/NEJMoa1713973.
PubMed
PubMed Central
CrossRef
Google Scholar
Hacke W. A new DAWN for imaging-based selection in the treatment of acute stroke. N Engl J Med. 2018;378(1):81–3.
PubMed
CrossRef
Google Scholar
van der Hoeven EJ, Schonewille WJ, Vos JA, et al. The basilar artery international cooperation study (BASICS): study protocol for a randomised controlled trial. Trials. 2013;14:200.
PubMed
PubMed Central
CrossRef
Google Scholar
Bashkar S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol. 2018:18–8.
Google Scholar
Oliveira Magaldi M, Nicolato A, Godinho JV, et al. Human placenta aneurysm model for training neurosurgeons in vascular neurosurgery. Neurosurgery. 2014;10(Suppl 4):592–600.
PubMed
CrossRef
Google Scholar
De Oliveira MMR, Ferrarez CE, Ramos TM, et al. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity. J Neurosurg. 2017;128(3):846–52.
PubMed
CrossRef
Google Scholar
Ostrom QT, Guttleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology. 2015;17:iv1–iv62.
PubMed
PubMed Central
CrossRef
Google Scholar
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.
PubMed
CrossRef
Google Scholar
Font-Burgada J, Reina O, Rossell D, Azorín F. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Res. 2014;42(4):2126–3.
CAS
PubMed
CrossRef
Google Scholar
Chikawa K, Morishita S. A linear time algorithm for detecting long genomic regions enriched with a specific combination of epigenetic states. BMC Genomics. 2015;16(Suppl 2):S8.
CrossRef
Google Scholar
Hortobágyi T, Bencze J, Varkoly G, et al. Meningioma recurrence. Open Med (Wars). 2016;11(1):168–73.
Google Scholar
De la Garza-Ramos R, Flores-Rodríue JV, Martínez-Gutierrez JC, Ruiz-Valls A, Caroso-Rio E. Current standing and frontiers of gene therapy for meningiomas. Neurosurg Focus. 2013;35(6):E4.
CrossRef
Google Scholar
Bi WL, Abedalthagafi M, Horowitz P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg. 2016;125:525–35.
CAS
PubMed
CrossRef
Google Scholar
Galani V, Lampri E, Varouktsi A, et al. Genetic and epigenetic alterations in meningiomas. Clin Neurol Neurosurg. 2017;158:119–25.
PubMed
CrossRef
Google Scholar
Tang M, Wei H, Han L, et al. Whole-genome sequencing identifies new genetic alterations in meningiomas. Oncotarget. 2017;8(10):17070–80.
PubMed
PubMed Central
CrossRef
Google Scholar
Olar A, Wani KM, Wilson CD, et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017;133(3):431–44.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
NNI Supplement to the President’s 2018 Budget. NSTC/COT/NSET. Nov 30, 2017.
Google Scholar
Peng C, Gao X, Xu J, et al. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 2017;10(4):1366–76.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ferber S, Tiram G, Sousa-Herves A, et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. Elife. 2017;6:pii: e25281.
CrossRef
Google Scholar
Zhang B, Wang H, Jin K, Jiang T, Shen S, Luo Z. BQ123 selectively improved tumor perfusion and enhanced nanomedicine delivery for glioblastomas treatment. Pharmacol Res. 2017;132:211–9. pii: S1043–6618(17)31332–4.
PubMed
CrossRef
Google Scholar
Panek WK, Khan OF, Yu D, Lesniak MS. Multiplexed nanomedicine for brain tumors: nanosized Hercules to tame our Lernaean Hydra inside? Nanomedicine (Lond). 2017; https://doi.org/10.2217/nnm-2017-0260.
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond). 2017;12(20):2533–54.
CrossRef
Google Scholar
Zhang B, Jiang T, Tuo Y, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett. 2017;410:12–9.
CAS
CrossRef
PubMed
Google Scholar