Skip to main content

The Frontiers of Neurosurgery

  • 925 Accesses

Abstract

Neurological surgery is a rapidly evolving medical field. Although relatively new, this medical specialty has experienced an unprecedented technological development. As we live the so-called fourth industrial revolution, neurosurgery seems to be following this revolution closely. It consists of robotics, artificial intelligence, nanotechnology, extensive study of epigenetics, tridimensional printing, big computer data, and automated machines, among others. This fascinating era has been reviewed in light of the fourth human revolution. The chapter is divided into various topics corresponding to different neurosurgical fields. Many recent advancements are presented, as well as what might be expected for doctors and patients. This chapter is based on current medical and technical literature, as we present today’s developments. Some topics allow us to predict what may be expected for us in the near future, since knowledge and technology have never developed so quickly.

Keywords

  • Technology
  • Medicine
  • Neurosurgery
  • Genetics
  • Epigenetics
  • Robotics in medicine
  • Nanotechnology
  • Artificial intelligence
  • Watson computer
  • Virtual reality
  • Medical and neurosurgical development

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-17649-5_20
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-17649-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 20.1

Suggested Readings and References

  1. Burkhardt JK, Zinn PO, Bozinov O, et al. Neurosurgical education in Europe and the United States of America. Neurosurg Rev. 2010;33(4):409–17.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Schwab K. The fourth industrial revolution. New York: Crown Business, Crown Publishing Group; 2016.

    Google Scholar 

  3. D’Andrea G, Trillo G, Picotti V, Raco A. Functional Magnetic Resonance Imaging (fMRI), pre-intraoperative tractography in neurosurgery: the experience of Sant’ Andrea Rome University Hospital. Acta Neurochir Suppl. 2017;124:241–50.

    PubMed  CrossRef  Google Scholar 

  4. D’Andrea G, Familiari P, Di Lauro A, et al. Safe resection of gliomas of the dominant angular gyrus availing of preoperative FMRI and intraoperative DTI: preliminary series and surgical technique. World Neurosurg. 2016;87:627–39.

    PubMed  CrossRef  Google Scholar 

  5. Nakagawa S, Murai Y, Matano F, et al. Evaluation video angiography of patency after vascular anastomosis using quantitative evaluation of visualization time in indocyanine green. World Neurosurg. 2018;110:e699–709.

    PubMed  CrossRef  Google Scholar 

  6. Roessler K, Krawagna M, Dörfler A, et al. Essentials in intraoperative indocyanine green videoangiography assessment for intracranial aneurysm surgery: conclusions from 295 consecutively clipped aneurysms and review of the literature. Neurosurg Focus. 2014;36(2):E7.

    PubMed  CrossRef  Google Scholar 

  7. Wright JM, Huang CL, Sharma R, et al. Cardiac standstill and circulatory flow arrest in surgical treatment of intracranial aneurysms: a historical review. Neurosurg Focus. 2014;36(4):E10.

    PubMed  CrossRef  Google Scholar 

  8. Intarakhao P, Thiarawat P, Rezai Jahromi B, et al. Adenosine-induced cardiac arrest as an alternative to temporary clipping during intracranial aneurysm surgery. J Neurosurg. 2018;129(3):684–90.

    PubMed  CrossRef  Google Scholar 

  9. Coelho G, Chaves TMF, Goes AF, et al. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst. 2017; https://doi.org/10.1007/s00381-017-3616-6.

  10. Govsa F, Karakas AB, Ozer MA, Eraslan C. Development of life-size patient-specific 3D-printed Dural venous models for preoperative planning. World Neurosurg. 2018;110:e141–9.

    PubMed  CrossRef  Google Scholar 

  11. Choque-Velasquez J, Colasanti R, Collan J, et al. Virtual reality glasses and “Eye-hands blind technique” for microsurgical training in Neurosurgery. World Neurosurg. 2018;112:126–30. pii: S1878–8750(18)30110–4.

    PubMed  CrossRef  Google Scholar 

  12. Gmeiner M, Dirnberger J, Fenz W, et al. Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg. 2018;112:e313–23. pii: S1878–8750(18)30082–2.

    PubMed  CrossRef  Google Scholar 

  13. Rhoton AL Jr. Cranial anatomy and surgical approaches. The Congress of Neurological Surgeons ed. Schaumberg; 2003.

    Google Scholar 

  14. Tang Y, Sun W, Toga AW, et al. A probabilistic atlas of human brainstem pathways based on connectome imaging data. NeuroImage. 2018;169:227–39.

    PubMed  CrossRef  Google Scholar 

  15. Abdallah CG, Averill LA, Collins KA, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42(6):1210–9.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Li T, Wang Q, Zhang J, et al. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr Bull. 2017;43(2):436–48.

    PubMed  Google Scholar 

  17. Lu FM, Dai J, Couto TA, et al. Diffusion tensor imaging tractography reveals disrupted white matter structural connectivity network in healthy adults with insomnia symptoms. Front Hum Neurosci. 2017;11:583.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Ji GJ, Yu Y, Miao HH, Wang ZJ, Tang YL, Liao W. Decreased network efficiency in benign epilepsy with centrotemporal spikes. Radiology. 2017;283(1):186–94.

    PubMed  CrossRef  Google Scholar 

  19. Whelan CD, Altmann A, Botía JA, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391–408.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  20. T Vu A, Jamison K, Glasser MF, et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. NeuroImage. 2017;154:23–32.

    PubMed  CrossRef  Google Scholar 

  21. Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.

    PubMed  CrossRef  Google Scholar 

  22. Martinez-Ramirez D, Jimenez-Shahed J, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: the international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol. 2018;75(3):353–9. https://doi.org/10.1001/jamaneurol.2017.4317.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord. 2018;33(1):36–47.

    PubMed  CrossRef  Google Scholar 

  24. Bari AA, Thum J, Babayan D, Lozano AM. Current and expected advances in deep brain stimulation for movement disorders. Prog Neurol Surg. 2018;33:222–9.

    PubMed  CrossRef  Google Scholar 

  25. Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: current uses and future directions. Brain Stimul. 2018;11(1):3–28.

    PubMed  CrossRef  Google Scholar 

  26. Beckett LA, Harvey DJ, Gamst A, et al. The Alzheimer’s disease neuroimaging initiative: annual change in biomarkers and clinical outcomes. Alzheimers Dement. 2010;6(3):257–64.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Ponce FA, Asaad WF, Foote KD, et al. Bilateral deep brain stimulation of the fornix for Alzheimer’s disease: surgical safety in the advance trial. J Neurosurg. 2016;125(1):75–84.

    PubMed  CrossRef  Google Scholar 

  28. Dalton B, Bartholdy S, Campbell IC, Schmidt U. Neurostimulation in clinical and sub-clinical eating disorders: a systematic update of the literature. Curr Neuropharmacol. 2018;16(8):1174–92. https://doi.org/10.2174/1570159X16666180108111532.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Lipsman N, Lam E, Volpini M, et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry. 2017;4(4):285–94.

    PubMed  CrossRef  Google Scholar 

  30. de Oliveira Souza C, de Lima-Pardini AC, Coelho DB, et al. Peduncolopontine DBS improves balance in progressive supranuclear palsy: instrumental analysis. Clin Neurophysiol. 2016;127(11):3470–1.

    PubMed  CrossRef  Google Scholar 

  31. Thevathasan W, Debu B, Aziz T, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20.

    PubMed  CrossRef  Google Scholar 

  32. Lizarraga KJ, Gorgulho A, Chen W, De Salles AA. Molecular imaging of movement disorders. World J Radiol. 2016;8(3):226–39.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Spetzler RF, Zabramski JM, McDougall CG, et al. Analysis of saccular aneurysms in the Barrow Ruptured Aneurysm Trial. J Neurosurg. 2018;128(1):120–5.

    PubMed  CrossRef  Google Scholar 

  34. Spetzler RF, McDougall CG, Zabramski JM, et al. The Barrow Ruptured Aneurysm Trial: 6-year results. J Neurosurg. 2015;123(3):609–17.

    PubMed  CrossRef  Google Scholar 

  35. Bijlenga P, Gondar R, Schilling S, et al. PHASES score for the management of intracranial aneurysm a cross-sectional population-based retrospective study. Stroke. 2017;48:1–8.

    CrossRef  Google Scholar 

  36. Greving JP, Wermer MJ, Brown RD Jr, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):59–66.

    CrossRef  PubMed  Google Scholar 

  37. Pexman JH, Barber PA, Hill MD, et al. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22(8):1534–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bal S, Bhatia R, Menon BK, et al. Time dependence of reliability of noncontrast computed tomography in comparison to computed tomography angiography source image in acute ischemic stroke. Int J Stroke. 2015;10(1):55–60.

    PubMed  CrossRef  Google Scholar 

  39. Fransen PS, Beumer D, Berkhemer OA, et al. MR CLEAN, a multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands: study protocol for a randomized controlled trial. Trials. 2014;15:343.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Goyal M, Dermchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever Thrombectomy after intravenous t-PA, vs. t-PA alone in acute stroke. N Engl J Med. 2015;372:2285–95.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Campbell BCV, Mitchell PJ, Kleinig PJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Jovin TG, Bonafe A, Cobo E, et al. Thrombectomy within 8 hours onset of acute stroke. N Engl J Med. 2015;372:2296–306.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Nogueira RG, Jadhav DC, Haussen DC, et al. Thrombectomy 6-24 hours after stroke with mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    PubMed  CrossRef  Google Scholar 

  45. Albers GW, Kemp MS, Christensen JP, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18. https://doi.org/10.1056/NEJMoa1713973.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  46. Hacke W. A new DAWN for imaging-based selection in the treatment of acute stroke. N Engl J Med. 2018;378(1):81–3.

    PubMed  CrossRef  Google Scholar 

  47. van der Hoeven EJ, Schonewille WJ, Vos JA, et al. The basilar artery international cooperation study (BASICS): study protocol for a randomised controlled trial. Trials. 2013;14:200.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  48. Bashkar S, Stanwell P, Cordato D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol. 2018:18–8.

    Google Scholar 

  49. Oliveira Magaldi M, Nicolato A, Godinho JV, et al. Human placenta aneurysm model for training neurosurgeons in vascular neurosurgery. Neurosurgery. 2014;10(Suppl 4):592–600.

    PubMed  CrossRef  Google Scholar 

  50. De Oliveira MMR, Ferrarez CE, Ramos TM, et al. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity. J Neurosurg. 2017;128(3):846–52.

    PubMed  CrossRef  Google Scholar 

  51. Ostrom QT, Guttleman H, Fulop J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology. 2015;17:iv1–iv62.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    PubMed  CrossRef  Google Scholar 

  53. Font-Burgada J, Reina O, Rossell D, Azorín F. chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Res. 2014;42(4):2126–3.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Chikawa K, Morishita S. A linear time algorithm for detecting long genomic regions enriched with a specific combination of epigenetic states. BMC Genomics. 2015;16(Suppl 2):S8.

    CrossRef  Google Scholar 

  55. Hortobágyi T, Bencze J, Varkoly G, et al. Meningioma recurrence. Open Med (Wars). 2016;11(1):168–73.

    Google Scholar 

  56. De la Garza-Ramos R, Flores-Rodríue JV, Martínez-Gutierrez JC, Ruiz-Valls A, Caroso-Rio E. Current standing and frontiers of gene therapy for meningiomas. Neurosurg Focus. 2013;35(6):E4.

    CrossRef  Google Scholar 

  57. Bi WL, Abedalthagafi M, Horowitz P, et al. Genomic landscape of intracranial meningiomas. J Neurosurg. 2016;125:525–35.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Galani V, Lampri E, Varouktsi A, et al. Genetic and epigenetic alterations in meningiomas. Clin Neurol Neurosurg. 2017;158:119–25.

    PubMed  CrossRef  Google Scholar 

  59. Tang M, Wei H, Han L, et al. Whole-genome sequencing identifies new genetic alterations in meningiomas. Oncotarget. 2017;8(10):17070–80.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Olar A, Wani KM, Wilson CD, et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathol. 2017;133(3):431–44.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  61. NNI Supplement to the President’s 2018 Budget. NSTC/COT/NSET. Nov 30, 2017.

    Google Scholar 

  62. Peng C, Gao X, Xu J, et al. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res. 2017;10(4):1366–76.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  63. Ferber S, Tiram G, Sousa-Herves A, et al. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. Elife. 2017;6:pii: e25281.

    CrossRef  Google Scholar 

  64. Zhang B, Wang H, Jin K, Jiang T, Shen S, Luo Z. BQ123 selectively improved tumor perfusion and enhanced nanomedicine delivery for glioblastomas treatment. Pharmacol Res. 2017;132:211–9. pii: S1043–6618(17)31332–4.

    PubMed  CrossRef  Google Scholar 

  65. Panek WK, Khan OF, Yu D, Lesniak MS. Multiplexed nanomedicine for brain tumors: nanosized Hercules to tame our Lernaean Hydra inside? Nanomedicine (Lond). 2017; https://doi.org/10.2217/nnm-2017-0260.

  66. Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond). 2017;12(20):2533–54.

    CrossRef  Google Scholar 

  67. Zhang B, Jiang T, Tuo Y, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett. 2017;410:12–9.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgement

The author would like to express his gratitute for the input and feedback from Dr. Robert F, Spetzler, from the Barrow Neurological Institute, Phoenix, AZ.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, M.A.T. (2019). The Frontiers of Neurosurgery. In: Joaquim, A., Ghizoni, E., Tedeschi, H., Ferreira, M. (eds) Fundamentals of Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-17649-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17649-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17648-8

  • Online ISBN: 978-3-030-17649-5

  • eBook Packages: MedicineMedicine (R0)