The Social Function of Latrines: A Hypothesis-Driven Research Approach

Conference paper


The function of latrines is still debated in many mammals, and in most cases latrine use is likely multi-functional. Functional hypotheses can be broadly divided into five categories that are not all mutually exclusive: resource defence, information centre/advertisement, landmarks/orientation, parasite control, or predator–prey interactions. To standardise all investigations into latrine function across species, we present a hypothesis-driven research framework based on the following five key categories of data that can, and we argue should, be collected from latrines: (1) spatial distribution patterns; (2) temporal usage patterns; (3) individual visitation and contribution patterns (to individual latrines); (4) behaviour of visitors; and (5) scent signal content and longevity. We suggest that our proposed approach offers a much-needed standardised structure to guide investigation into the function of latrine use in mammals.


  1. Ali HAM, Mayes RW, Lamb CS, Hector BL, Verma AK, Ørskov ER (2004) The potential of long-chain fatty alcohols and long-chain fatty acids as diet composition markers: development of methods for quantitative analysis and faecal recoveries of these compounds in sheep fed mixed diets. J Agricul Sci 142(1):71–78CrossRefGoogle Scholar
  2. Banks PB, Bytheway JP, Carthey AJ, Hughes NK, Price CJ (2014) Olfaction and predator-prey interactions amongst mammals in Australia. Carniv Aust: Past, Present Futur, 389Google Scholar
  3. Barja I, de Miguel FJ, Bárcena F (2004) The importance of crossroads in faecal marking behaviour of the wolves (Canis lupus). Naturwissenschaften 91:489–492CrossRefGoogle Scholar
  4. Brown RE, Macdonald DW (eds) (1985) Social odours in mammals. Clarendon Press, OxfordGoogle Scholar
  5. Buesching CD, Jordan NR (in press) The function of small carnivore latrines: case studies and a research framework for hypothesis-testing. In: San EDL, Sato JJ, Belant JL, Somers MJ (eds) Small carnivores: evolution, ecology, behaviour & conservation. Wiley PublishingGoogle Scholar
  6. Buesching CD, Macdonald DW (2001) Scent-marking behaviour of the European badger (Meles meles): resource defence or individual advertisement? In: Chemical signals in vertebrates vol 9. Springer, Boston, MA, pp 321–327CrossRefGoogle Scholar
  7. Buesching CD, Stankowitch T (2017) Communication amongst the musteloids: signs, signals, and cues. In: Macdonald DW, Newman C, Harrington LA (eds) Biology and conservation of the musteloids (Badgers, Otters, Skunks, Raccoons and their kin). OUPGoogle Scholar
  8. Buesching CD, Waterhouse JS, Macdonald DW (2002) Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) part I: chemical differences related to individual parameters. J Chem Ecol 28(1):41–56CrossRefGoogle Scholar
  9. Buesching CD, Tinnesand HV, Sin Y, Rosell F, Burke T, Macdonald DW (2016a) Coding of group odor in the subcaudal gland secretion of the European badger Meles meles: chemical composition and pouch microbiota. In: Chemical signals in vertebrates vol 13. Springer, Cham, pp 45–62CrossRefGoogle Scholar
  10. Buesching CD, Newman C, Service K, Macdonald DW, Riordan P (2016b) Latrine marking patterns of badgers (Meles meles) with respect to population density and range size. Ecosph 7(5):e01328CrossRefGoogle Scholar
  11. Curtis VA (2014) Infection-avoidance behaviour in humans and other animals. Tr Immunol 35(10):457–464CrossRefGoogle Scholar
  12. Dawkins R, Krebs JR (1978) Animal signals: information or manipulation? In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, Oxford, pp 282–309Google Scholar
  13. Delahay RJ, Brown JA, Mallinson PJ, Spyvee PD, Handoll D, Rogers LM, Cheeseman CL (2000) The use of marked bait in studies of the territorial organization of the European badger (Meles meles). Mamm Rev 30(2):73–87CrossRefGoogle Scholar
  14. Eisenberg JF, Kleiman DG (1972) Olfactory communication in mammals. Ann Rev Ecol Syst 3:1–32CrossRefGoogle Scholar
  15. Ellwood SA, Newman C, Montgomery RA, Nicosia V, Buesching CD, Markham A, Mascolo C, Trigoni N, Pasztor B, Dyo V, Latora V (2017) An active-radio-frequency-identification system capable of identifying co-locations and social-structure: validation with a wild free-ranging animal. M Ecol Evol 8(12):1822–1831CrossRefGoogle Scholar
  16. Espírito-Santo C, Rosalino LM, Santos-Reis M (2007) Factors affecting the placement of common genet latrine sites in a Mediterranean landscape in Portugal. J Mammal 88:201–207CrossRefGoogle Scholar
  17. Fiorelli LE, Ezcurra MD, Hechenleitner EM, Arganaraz E, Taborda JR, Trotteyn MJ, … , Desojo JB (2013) The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores. Sci Rep 3:3348Google Scholar
  18. Gorman ML, Trowbridge BJ (1989) The role of odor in the social lives of carnivores. In: Gittleman JL (ed) Carnivore behavior, ecology, and evolution, vol 1. Cornell University Press, Ithaca, pp 57–88CrossRefGoogle Scholar
  19. Gosling LM (1982) A reassessment of the function of scent marking in territories. Z Tierpsychol 60:89–118CrossRefGoogle Scholar
  20. Gosling LM, McKay HV (1990) Competitor assessment by scent matching: an experimental test. Behav Ecol Sociobiol 26:415–420CrossRefGoogle Scholar
  21. Gosling LM, Roberts SC (2001) Testing ideas about the function of scent marks in territories from spatial patterns. Anim Behav 62(3):F7–F10CrossRefGoogle Scholar
  22. Hammerstein P (1981) The role of asymmetries in animal contests. Anim Behav 29:193–205CrossRefGoogle Scholar
  23. Hart BL (1983) Flehmen behavior and vomeronasal organ function. In: Chemical signals in vertebrates vol 3. Springer, Boston, MA, pp 87–103CrossRefGoogle Scholar
  24. Hediger H (1949) Säugetier-Territorien und ihre Markierung. Bijdr Tot Dierk 28:172–184Google Scholar
  25. Hirsch BT, Prange S, Hauver SA, Gehrt SD (2014) Patterns of latrine use by raccoons (Procyon lotor) and implications for Bayliscaris procyonis transmission. J Wildl Dis 50:243–249CrossRefGoogle Scholar
  26. Hughes NK, Kelley JL, Banks PB (2009) Receiving behaviour is sensitive to risks from eavesdropping predators. Oecologia 160(3):609–617CrossRefGoogle Scholar
  27. Hughes NK, Price CJ, Banks PB (2010) Predators are attracted to the olfactory signals of prey. PLoS ONE 5(9):e13114CrossRefGoogle Scholar
  28. Irwin MT, Samonds KE, Raharison J-L, Wright PC (2004) Lemur latrines: observations of latrine behavior in wild primates and possible ecological significance. J Mammal 85(3):420–427CrossRefGoogle Scholar
  29. Jordan NR (2007) Scent-marking investment is determined by sex and breeding status in meerkats. Anim Behav 74(3):531–540CrossRefGoogle Scholar
  30. Jordan NR, Manser MB, Mwanguhya F, Kyabulima S, Rüedi P, Cant MA (2011) Scent marking in wild banded mongooses: 1. Sex-specific scents and overmarking. Anim Behav 81(1):31–42CrossRefGoogle Scholar
  31. Kilshaw K, Newman C, Buesching C, Bunyan J, Macdonald D (2009) Coordinated latrine use by European badgers, Meles meles: potential consequences for territory defense. J Mammal 90(5):1188–1198CrossRefGoogle Scholar
  32. Krebs JR (1982) Territorial defence in the great tit (Parus major): do residents always win? Behav Ecol Sociobiol 11:185–194CrossRefGoogle Scholar
  33. Logiudice K (2001) Latrine foraging strategies of two small mammals: implications for the transmission of Baylisascaris procyonis. Amer Midl Nat 146:369–378CrossRefGoogle Scholar
  34. Macdonald DW, Newman C, Buesching CD (2015) Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. In: Macdonald DW & Feber RE (eds) Wildlife conservation on farmland, vol 2: Conflict in the Countryside. Oxford University Press, Oxford, pp 65–95Google Scholar
  35. Maynard-Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175CrossRefGoogle Scholar
  36. Mella VS, Cooper CE, Davies SJ (2014) Behavioural responses of free-ranging western grey kangaroos (Macropus fuliginosus) to olfactory cues of historical and recently introduced predators. Austral Ecol 39(1):115–121CrossRefGoogle Scholar
  37. Muller-Schwarze D (1987) Evolution of cervid olfactory communication. In: Wemmer CM (ed) Biology and management of the Cervidae, vol 577. Smith Institute Press, Washington, DC, pp 223–234Google Scholar
  38. Page LK, Swihart RK, Kazacos KR (1998) Raccoon latrine structure and its potential role in transmission of Baylisascaris procyonis to vertebrates. Amer Midl Nat 140:180–185CrossRefGoogle Scholar
  39. Palme R, Touma C, Arias N, Dominchin MF, Lepschy M (2013) Steroid extraction: get the best out of faecal samples. Wien Tierarztl Monatsschr 100(9–10):238–246Google Scholar
  40. Poduschka W, Wemmer C (1986) Observations on Chemical Communication and its Glandular Sources in Selected Insectivora. In: Duvall D, Müller-Schwarze D, Silverstein RM (eds) Chemical signals in vertebrates vol 4. Springer, Boston, MACrossRefGoogle Scholar
  41. Roberts NM, Crimmins SM, Hamilton DA, Gallagher E (2008) An evaluation of bridge-sign surveys to monitor river otter (Lontra canadensis) populations. Amer Midl Nat 160(2):358–363CrossRefGoogle Scholar
  42. Roper TJ (2010) Badger. The New Naturalist Library, Collins, LondonGoogle Scholar
  43. Ruibal M, Peakall R, Claridge A (2011) Socio-seasonal changes in scent-marking habits in the carnivorous marsupial Dasyurus maculatus at communal latrines. Austral J Zool 58(5):317–322CrossRefGoogle Scholar
  44. Sneddon IA (1991) Latrine use by the European rabbit (Oryctolagus cuniculus). J Mammal 72(4):769–775CrossRefGoogle Scholar
  45. Stewart PD, Anderson C, Macdonald DW (1997) A mechanism for passive range exclusion: evidence from the European badger (Meles meles). J Theo Biol 184(3):279–289CrossRefGoogle Scholar
  46. Stewart PD, MacDonald DW, Newman C, Tattersall FH (2002) Behavioural mechanisms of information transmission and reception by badgers, Meles meles, at latrines. Anim Behav 63(5):999–1007CrossRefGoogle Scholar
  47. Sun L, Müller-Schwarze D (1998) Anal gland secretion codes for relatedness in the beaver. Castor canadensis. Ethol 104(11):917–927CrossRefGoogle Scholar
  48. Tinnesand HV, Buesching CD, Noonan MJ, Newman C, Zedrosser A, Rosell F, Macdonald DW (2015) Will trespassers be prosecuted or assessed according to their merits? A consilient interpretation of territoriality in a group-living carnivore, the European Badger (Meles meles). PLoS ONE 10(7):e0132432CrossRefGoogle Scholar
  49. Tsunoda M, Kaneko Y, Sako T, Koizumi R, Iwasaki K, Mitsuhashi I, Saito MU, Hisano M, Newman C, Macdonald DW, Buesching CD (2018) Human disturbance affects latrine‐use patterns of raccoon dogs. J Wildl ManagGoogle Scholar
  50. Weinstein SB, Moura CW, Mendez JF, Lafferty KD (2018) Fear of feces? Tradeoffs between disease risk and foraging drive animal activity around raccoon latrines. OikosGoogle Scholar
  51. Wronski T, Plath M (2010) Characterization of the spatial distribution of latrines in reintroduced mountain gazelles: do latrines demarcate female group home ranges? J Zool 280(1):92–101CrossRefGoogle Scholar
  52. Zhou Y, Chen W, Buesching CD, Newman C, Kaneko Y, Xiang M, Nie C, Macdonald DW, Xie Z (2015) Hog badger (Arctonyx collaris) latrine use in relation to food abundance: evidence of the scarce factor paradox. Ecosphere 6(1):19CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Wildlife Conservation Research UnitUniversity of OxfordOxfordUK
  2. 2.Centre for Ecosystem ScienceUniversity of New South WalesSydneyAustralia
  3. 3.Taronga Conservation Society AustraliaTaronga Western Plains Zoo, Wildlife Reproduction CentreDubboAustralia
  4. 4.Botswana Predator Conservation TrustMaunBotswana

Personalised recommendations