Skip to main content

Learning Büchi Automata and Its Applications

  • Chapter
  • First Online:
Engineering Trustworthy Software Systems (SETSS 2018)

Abstract

In this work, we review an algorithm that learns a Büchi automaton from a teacher who knows an \(\omega \)-regular language; the algorithm is based on learning a formalism named family of DFAs (FDFAs) recently proposed by Angluin and Fisman. We introduce the learning algorithm by learning the simple \(\omega \)-regular language \((ab)^{\omega }\): besides giving the readers an overview of the algorithm, it guides them on how the algorithm works step by step. Further, we demonstrate how the learning algorithm can be exploited in classical automata operations such as complementation checking and in the context of termination analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RABIT tool. http://languageinclusion.org/doku.php?id=tools

  2. Aarts, F., Vaandrager, F.W.: Learning I/O automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_6

    Chapter  Google Scholar 

  3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based Büchi automata universality and inclusion testing. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 132–147. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_14

    Chapter  Google Scholar 

  4. Abdulla, P.A., et al.: Advanced ramsey-based Büchi automata inclusion testing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 187–202. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_13

    Chapter  Google Scholar 

  5. Allred, J.D., Ultes-Nitsche, U.: A simple and optimal complementation algorithm for Büchi automata. In: LICS, pp. 46–55 (2018)

    Google Scholar 

  6. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126 (1987)

    Article  Google Scholar 

  7. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java classes. In: POPL, pp. 98–109 (2005)

    Article  Google Scholar 

  8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  Google Scholar 

  9. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of omega-regular languages. In: MFCS, pp. 11:1–11:14 (2016)

    Google Scholar 

  10. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating automata. In: IJCAI, pp. 3308–3314 (2015)

    Google Scholar 

  11. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci. 650, 57–72 (2016)

    Article  MathSciNet  Google Scholar 

  12. Arnold, A.: A syntactic congruence for rational \(\omega \)-languages. Theor. Comput. Sci. 39, 333–335 (1985)

    Article  MathSciNet  Google Scholar 

  13. Babiak, T., et al.: The hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31

    Chapter  Google Scholar 

  14. Ben-Amram, A.M.: Size-change termination, monotonicity constraints and ranking functions. Log. Methods Comput. Sci. 6 (2010)

    Google Scholar 

  15. Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-constraint loops. In: POPL, pp. 51–62. ACM, New York (2013)

    Google Scholar 

  16. Ben-Amram, A.M., Genaim, S.: Complexity of bradley-manna-sipma lexicographic ranking functions. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 304–321. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_18

    Chapter  Google Scholar 

  17. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_32

    Chapter  Google Scholar 

  18. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: TACAS, pp. 193–207 (1999)

    Google Scholar 

  19. Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J., Tsai, M.-H.: Complementing semi-deterministic Büchi automata. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 770–787. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_49

    Chapter  Google Scholar 

  20. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA. In: IJCAI, pp. 1004–1009 (2009)

    Google Scholar 

  21. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_32

    Chapter  Google Scholar 

  22. Borralleras, C., et al.: Proving termination through conditional termination. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_6

    Chapter  Google Scholar 

  23. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_48

    Chapter  Google Scholar 

  24. Breuers, S., Löding, C., Olschewski, J.: Improved ramsey-based Büchi complementation. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 150–164. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_10

    Chapter  Google Scholar 

  25. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)

    Google Scholar 

  26. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational \(\omega \)-languages. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–566. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58027-1_27

    Chapter  MATH  Google Scholar 

  27. Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig, M.: Learning the language of error. In: ATVA, pp. 114–130 (2015)

    Chapter  Google Scholar 

  28. Chen, Y.F., et al.: Advanced automata-based algorithms for program termination checking. In: PLDI, pp. 135–150 (2018)

    Google Scholar 

  29. Chen, Y.F., et al.: PAC learning-based verification and model synthesis. In: ICSE, pp. 714–724 (2016)

    Google Scholar 

  30. Choueka, Y.: Theories of automata on \(\omega \)-tapes: a simplified approach. J. Comput. Syst. Sci. 8(2), 117–141 (1974)

    Article  MathSciNet  Google Scholar 

  31. Clarke, E.M.: Model checking – my 27-year quest to overcome the state explosion problem. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 182–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_13

    Chapter  Google Scholar 

  32. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

    Book  MATH  Google Scholar 

  33. Clemente, L., Mayr, R.: Advanced automata minimization. In: Proceedings of POPL 2013, pp. 63–74. ACM (2013)

    Google Scholar 

  34. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_24

    Chapter  MATH  Google Scholar 

  35. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for bit-vector relations. Formal Methods Syst. Des. 43(1), 93–120 (2013)

    Article  Google Scholar 

  36. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI, pp. 415–426. ACM, New York (2006)

    Article  Google Scholar 

  37. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM 54(5), 88–98 (2011)

    Article  Google Scholar 

  38. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_4

    Chapter  Google Scholar 

  39. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  40. Emerson, E.A., Lei, C.: Modalities for model checking: branching time strikes back. In: POPL, pp. 84–96 (1985)

    Google Scholar 

  41. Emerson, E.A., Lei, C.: Modalities for model checking: branching time logic strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

    Article  MathSciNet  Google Scholar 

  42. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_2

    Chapter  MATH  Google Scholar 

  43. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic systems using learning. In: QEST, pp. 133–142 (2010)

    Google Scholar 

  44. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

    Article  Google Scholar 

  45. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.Y.: Unifying Büchi complementation constructions. Log. Methods Comput. Sci. 9(1) (2013)

    Google Scholar 

  46. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30476-0_10

    Chapter  Google Scholar 

  47. Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_27

    Chapter  Google Scholar 

  48. Giesl, J., et al.: Analyzing program termination and complexity automatically with AProVe. J. Autom. Reason. 58, 3–31 (2017)

    Article  MathSciNet  Google Scholar 

  49. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    Book  MATH  Google Scholar 

  50. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theor. Comput. Sci. 411(47), 4029–4054 (2010)

    Article  MathSciNet  Google Scholar 

  51. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nondeterministic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39724-3_10

    Chapter  Google Scholar 

  52. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15769-1_19

    Chapter  Google Scholar 

  53. van Heerdt, G., Sammartino, M., Silva, A.: CALF: categorical automata learning framework. In: CSL, pp. 29:1–29:24 (2017)

    Google Scholar 

  54. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 365–380. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_26

    Chapter  MATH  Google Scholar 

  55. Heizmann, M., Hoenicke, J., Podelski, A.: Termination analysis by learning terminating programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 797–813. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_53

    Chapter  Google Scholar 

  56. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

    Google Scholar 

  57. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9_17

    Chapter  Google Scholar 

  58. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

    Article  MathSciNet  Google Scholar 

  59. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  60. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  61. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_59

    Chapter  MATH  Google Scholar 

  62. Kaminski, M.: A classification of \(\omega \)-regular languages. Theor. Comput. Sci. 36, 217–229 (1985)

    Article  MathSciNet  Google Scholar 

  63. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  64. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_9

    Chapter  Google Scholar 

  65. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Logic 2(3), 408–429 (2001)

    Article  MathSciNet  Google Scholar 

  66. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. J. Comput. Syst. Sci. 35(1), 59–71 (1987)

    Article  MathSciNet  Google Scholar 

  67. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-theoretic Approach. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  68. Landweber, L.H.: Decision problems for \(\omega \)-automata. Math. Syst. Theory 3(4), 376–384 (1969)

    Article  MathSciNet  Google Scholar 

  69. Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification inference. In: PLDI, pp. 489–498. ACM, New York (2015)

    Article  Google Scholar 

  70. Lee, W., Wang, B.-Y., Yi, K.: Termination analysis with algorithmic learning. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 88–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_12

    Chapter  Google Scholar 

  71. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Comput. Sci. 11(1) (2015)

    Google Scholar 

  72. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. CoRR abs/1610.07380 (2016). http://arxiv.org/abs/1610.07380

  73. Li, Y., Chen, Y.-F., Zhang, L., Liu, D.: A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 208–226. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_12

    Chapter  Google Scholar 

  74. Li, Y., Turrini, A., Zhang, L., Schewe, S.: Learning to complement Büchi automata. In: VMCAI, vol. 10747, pp. 313–335 (2018)

    Google Scholar 

  75. Lin, S.W., André, E., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compositional verification of timed systems. IEEE Trans. Softw. Eng. 40(2), 137–153 (2014)

    Article  Google Scholar 

  76. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)

    Article  MathSciNet  Google Scholar 

  77. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. In: STACS, pp. 586–594 (1993)

    Google Scholar 

  78. McMillan, K.L.: Symbolic Model Checking. Kluwer (1993)

    Google Scholar 

  79. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal automata. In: POPL, pp. 613–625 (2017)

    Google Scholar 

  80. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing liveness to safety in first-order logic. ACM Program. Lang. 2(POPL), 26:1–26:33 (2018)

    Google Scholar 

  81. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Automata Lang. Comb. 7(2), 225–246 (2002)

    MathSciNet  MATH  Google Scholar 

  82. Piterman, N.: From nondeterministic Büchi and streett automata to deterministic parity automata. In: LICS, pp. 255–264 (2006)

    Google Scholar 

  83. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_20

    Chapter  Google Scholar 

  84. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  85. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_31

    Chapter  Google Scholar 

  86. Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-threaded programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 237–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_17

    Chapter  MATH  Google Scholar 

  87. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. In: STOC, pp. 411–420 (1989)

    Google Scholar 

  88. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX, pp. 193–206 (2015)

    Google Scholar 

  89. Safra, S.: On the complexity of omega-automata. In: FOCS, pp. 319–327 (1988)

    Google Scholar 

  90. Schewe, S.: Büchi complementation made tight. In: STACS. LIPIcs, vol. 3, pp. 661–672 (2009)

    Google Scholar 

  91. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_13

    Chapter  MATH  Google Scholar 

  92. Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic Büchi automata for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_17

    Chapter  Google Scholar 

  93. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with appplications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

    Article  Google Scholar 

  94. Staiger, L.: Research in the theory of omega-languages. Elektronische Informationsverarbeitung und Kybernetik 23(8/9), 415–439 (1987)

    MathSciNet  MATH  Google Scholar 

  95. Ströder, T., et al.: Automatically proving termination and memory safety for programs with pointer arithmetic. J. Autom. Reason. 58, 33–65 (2017)

    Article  MathSciNet  Google Scholar 

  96. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B: Formal Models and Sematics, chap. 4, pp. 133–192 (1990)

    Google Scholar 

  97. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7

    Chapter  Google Scholar 

  98. Tsai, M., Fogarty, S., Vardi, M.Y., Tsay, Y.: State of Büchi complementation. Log. Methods Comput. Sci. 10(4) (2014)

    Google Scholar 

  99. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_62

    Chapter  Google Scholar 

  100. Tsay, Y.-K., Tsai, M.-H., Chang, J.-S., Chang, Y.-W.: Büchi store: an open repository of Büchi automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 262–266. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_23

    Chapter  Google Scholar 

  101. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 54–70. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_4

    Chapter  Google Scholar 

  102. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8_22

    Chapter  Google Scholar 

  103. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)

    Article  Google Scholar 

  104. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6_6

    Chapter  Google Scholar 

  105. Vardi, M.Y.: The Büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_2

    Chapter  Google Scholar 

  106. Vardi, M.Y., Wilke, T.: Automata: from logics to algorithms. In: Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], pp. 629–736 (2008)

    Google Scholar 

  107. Wang, F., Wu, J.-H., Huang, C.-H., Chang, K.-H.: Evolving a test oracle in black-box testing. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 310–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19811-3_22

    Chapter  Google Scholar 

  108. Yan, Q.: Lower bounds for complementation of \(\omega \)-automata via the full automata technique. Log. Methods Comput. Sci. 4(1:5) (2008)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 61532019, 61761136011), and by the CAP project GZ1023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Turrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Turrini, A., Chen, YF., Zhang, L. (2019). Learning Büchi Automata and Its Applications. In: Bowen, J., Liu, Z., Zhang, Z. (eds) Engineering Trustworthy Software Systems. SETSS 2018. Lecture Notes in Computer Science(), vol 11430. Springer, Cham. https://doi.org/10.1007/978-3-030-17601-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17601-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17600-6

  • Online ISBN: 978-3-030-17601-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics