Skip to main content

Azospirillum as Biofertilizer for Sustainable Agriculture: Azospirillum brasilense AZ39 as a Model of PGPR and Field Traceability

Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Azospirillum is one of the best studied genus of plant growth promoting rhizobacteria at present. These bacteria are able to colonize hundreds of plant species and significantly improve their growth, development and productivity under field conditions. Besides nitrogen fixation, the most studied mechanism proposed for Azospirillum to explain plant growth promotion of inoculated plants has been related to its ability to produce several phytohormones, mainly auxins and particularly indole-3-acetic acid. Although different capacities have been described to explain the plant growth regulation by Azospirillum one single mechanism is not quite extensive to explain the full effect observed on inoculated plants. The bacterial mode of action is currently better explained as the result of additive and selective effects. One of the most important achievements obtained thus far is the utilization of azospirilla as commercial inoculants in approximately 7.0 million doses and 5.0 million ha, mainly cultivated with cereal crops and legumes in South America. Different inoculation practices (farmer applied or industrial seed treatments, in-furrow, foliar or soil sprayed applications) have been developed and improved in the last two decades for a wide range of crops, in field conditions. Particularly, the combined inoculation of legumes with rhizobia and azospirilla, could over improve the performance of the plants compared with a single inoculation, due to the complementary biological processes of both microbes. The development and validation of specific novel methodologies for identification of A. brasilense, and particularly the strain Az39 in both bio-products and inoculated samples (i.e. soil, rhizosphere, seeds or plant tissues) offer a precise tool to evaluate the functionality and traceability of these microorganisms in the environment. In this chapter, we explore some classical mechanisms of plant growth promotion in A. brasilense Az39, one of the most widely used PGPR strains for inoculant production in South America. Additionally, we discuss some novel molecular tools designated to identify this strain in both bio-products and field conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    Article  CAS  Google Scholar 

  • Aziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A., & Zagnitko, O. (2008). The RAST server: Rapid annotations using subsystems technology. BMC Genomics, 9, 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldani, V., Alvarez, M., Baldani, J., & Döbereiner, J. (1986). Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil, 90, 35–46.

    Article  Google Scholar 

  • Bally, R., Thomas-Bauzon, D., Heulin, T., Balandreau, J., Richard, C., & De Ley, J. (1983). Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Canadian Journal of Microbiology, 29, 881–887.

    Article  Google Scholar 

  • Barbieri, P., Bernardi, A., Galli, E., & Zanetti, G. (1988). Effects of inoculation with different strains of Azospirillum brasilense on wheat roots development. In W. Klingmüller (Ed.), Azospirillum IV: Genetics, physiology, ecology (pp. 181–188). Berlin: Springer.

    Chapter  Google Scholar 

  • Bashan, Y., & de-Bashan, L. E. (2005). Bacteria/plant growth-promoting. In D. Hillel (Ed.), Encyclopedia of soils in the environment (Vol. 1, pp. 103–115). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth. A critical assessment. Advances in Agronomy, 108, 77–136.

    Article  CAS  Google Scholar 

  • Bashan, Y., & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36, 591–608.

    Article  CAS  Google Scholar 

  • Bashan, Y., Holguin, G., & de-Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Canadian Journal of Microbiology, 50, 521–577.

    Article  CAS  PubMed  Google Scholar 

  • Baudoin, E., Couillerot, O., Spaepen, S., Moënne-Loccoz, Y., & Nazaret, S. (2010). Applicability of the 16S-23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. Journal of Applied Microbiology, 108, 25–38.

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck, M. W. (1922). Azotobacter chroococcum als indikator van de vruchtbarrheid van den ground. K Ned Akab Wet Versl Gewone Vergad Afd Natuurkd, 30, 431–438.

    Google Scholar 

  • Beijerinck, M. W. (1925). Über ein Spirillum, welches freien Stick-stoff binden kann. Zentralblatt für Bakteriologie, 63, 353–359.

    CAS  Google Scholar 

  • Ben Dekhil, S., Cahill, M., Stackebrandt, E., & Sly, L. I. (1997). Transfer of Conglomeromonas largomobilis subsp. largomobilis to the Genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the New Type Species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Systematic and Applied Microbiology, 20, 72–77.

    Article  Google Scholar 

  • Bikandi, J., San Millán, R., Rementeria, A., & Garaizar, J. (2004). In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics, 20(5), 798–799.

    Article  CAS  PubMed  Google Scholar 

  • Bottini, R., Cassán, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Bottini, R., Fulchieri, M., Pearce, D., & Pharis, R. P. (1989). Identification of gibberellins A1, A3, and isoA3 in cultures of Azospirillum lipoferum. Plant Physiology, 90, 45–47.

    Google Scholar 

  • Caballero-Mellado, J., López-Reyes, L., & Bustillos-Cristales, R. (1999). Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiology Letters, 178(2), 283–288.

    Article  CAS  Google Scholar 

  • Cassán, F., & Díaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117–130.

    Article  CAS  Google Scholar 

  • Cassán, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V., & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45, 12–19.

    Article  CAS  Google Scholar 

  • Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant growth promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440–459.

    Article  CAS  Google Scholar 

  • Chamam, A., Sanguin, H., Bellvert, F., Meiffren, G., Comte, G., Wisniewski-Dyé, F., Bertrand, C., & Prigent-Combaret, C. (2013). Plant secondary metabolite profiling evidences strain dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry, 87, 65–77.

    Article  CAS  PubMed  Google Scholar 

  • Charyulu, P., Fourcassie, F., Barbouche, A., Rondro Harisoa, L., Omar, A., Weinhard, P., Marie, R., & Balandreau, J. (1985). Field inoculation of rice using in vitro selected bacterial and plant genotypes. In W. Klingmüller (Ed.), Azospirillum III: Genetics, physiology, ecology (pp. 163–179). Berlin: Springer.

    Chapter  Google Scholar 

  • Cohen, A., Bottini, R., Pontin, M., Berli, F., Moreno, D., Boccanlandro, H., Travaglia, C., & Piccoli, P. (2015). Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum, 153, 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.

    Article  CAS  Google Scholar 

  • Costacurta, A., Keijers, V., & Vanderleyden, J. (1994). Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular Genetics and Genomics, 243, 463–472.

    CAS  Google Scholar 

  • Couillerot, O., Bouffaud, M. L., Baudoin, E., Muller, D., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2010a). Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biology and Biochemistry, 42, 2298–2305.

    Article  CAS  Google Scholar 

  • Couillerot, O., Poirier, M. A., Prigent-Combaret, C., Mavingui, P., Caballero-Mellado, J., & Moënne-Loccoz, Y. (2010b). Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. Journal of Applied Microbiology, 109, 528–538.

    CAS  PubMed  Google Scholar 

  • Creus, C., Graziano, M., Casanovas, E., Pereyra, A., Simontacchi, M., Puntarulo, S., Barassi, C., & Lamattina, L. (2005). Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta, 221, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Crozier, A., Arruda, P., Jasmin, J. M., Monteiro, A. M., & Sandberg, G. (1988). Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Applied and Environmental Microbiology, 54, 2833–2283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Zorita, M., & Fernández-Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat production. European Journal of Soil Biology, 45, 3–11.

    Article  Google Scholar 

  • Díaz-Zorita, M., Balína, R. M., & Fernández-Canigia, M. V. (2012). Azospirillum brasilense enhances alfalfa productivity: Field evaluation. In J. C. Perez, J. Soler Arango, & L. F. Posada Uribe (Eds.), PGPR. 9th International and 1st Latinamerican PGPR Workshop. “Returning to Our Roots”. Quirama, Medellín (Colombia), June 3–8.

    Google Scholar 

  • Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., & Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212, 155–164.

    Article  CAS  Google Scholar 

  • Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek, 106, 85–125.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, B., Weber, O. B., Kirchhof, G., Halbritter, A., Stoffels, M., & Hartmann, A. (2001). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy, A., Nishioka, K., Sato, T., Suzuki, H., Ye, B., Hamada, T., Isawa, T., Mitsui, H., & Minamisawa, K. (2001). Endophytic colonzation and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology, 67, 5285–5293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquivel-Cote, R., Ramı’rez-Gama, R., Tsuzuki-Reyes, G., Orozco-Segovia, A., & Huante, P. (2010). Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant and Soil, 337, 65–75.

    Google Scholar 

  • Falik, E., Okon, Y., & Epstein, E. (1989). Identification and quantification of IAA and IBA in Azospirillum brasilense-inoculated maize roots. Soil Biology and Biochemistry, 21, 147–153.

    Article  Google Scholar 

  • Falk, E. C., Döbereiner, J., Johnson, J. L., Krieg, N. R., et al. (1985). Deoxyribonucleic acid homology of Azospirillum amazonense Magalhães, 1984 and emendation of the description of the genus Azospirillum. International Journal of Systematic Bacteriology, 35, 117–118.

    Article  CAS  Google Scholar 

  • Felici, C., Vettori, L., Giraldi, E., Forino, L. M. C., Toffanin, A., Tagliasacchi, A. M., & Nuti, M. (2008). Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Applied Soil Ecology, 40, 260–270.

    Article  Google Scholar 

  • Fomenkov, A., Vincze, T., Grabovich, M., Anton, B. P., Dubinina, G., Orlova, M., Belousova, E., & Roberts, R. J. (2016, January 7). Complete genome sequence of a strain of Azospirillum thiophilum isolated from a sulfide spring. Genome Announcements, 4(1). pii: e01521-15.

    Google Scholar 

  • Fukami, J., Nogueira, M., Silva Araujo, R., & Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 6, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick, B. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, Article ID963401.

    Google Scholar 

  • Hartmann, A., Singh, M., & Klingmüller, W. (1983). Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian Journal of Microbiology, 29, 916–923.

    Article  CAS  Google Scholar 

  • Holmberg, A. I. J., Melin, P., Levenfors, J. P., & Sundh, I. (2009). Development and evaluation of SCAR markers for a Pseudomonas brassicacearum strain used in biological control of snow mould. Biological Control, 48, 181–187.

    Article  CAS  Google Scholar 

  • Horemans, S., Koninck, K., Neuray, J., Hermans, R., & Vlassak, K. (1986). Production of plant growth substances by Azospirillum sp. and other rhizophere bacteria. Symbiosis, 2, 341–346.

    Google Scholar 

  • Jain, D. K., & Patriquin, D. G. (1985). Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs. Canadian Journal of Microbiology, 31, 206–2010.

    Article  Google Scholar 

  • Jijón-Moreno, S., Marcos-Jiménez, C., Pedraza, R. O., Ramírez-Mata, A., García de Salamone, I. G., Fernández-Scavino, A., Vásquez-Hernández, C. A., Soto-Urzúa, L., & Baca, B. E. (2015). The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Antonie Van Leeuwenhoek, 107(6), 1501–1517.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32(1), D277–D280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, T., Minamisawa, K., Isawa, T., Nakatsukasa, H., & Mitsui, H. (2010). Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Research, 17, 37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy, I., Pereg-Gerk, L., Wood, C., Deaker, R., Gilchrist, K., & Katupitiya, S. (1997). Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant and Soil, 194(1/2), 65–79.

    Article  CAS  Google Scholar 

  • Khammas, K. M., Ageron, E., Grimont, P. A. D., & Kaiser, P. (1989). Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and. Research in Microbiology, 140(8), 679–693.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhof, G., & Hartmann, A. (1992). Development of gene probe for Azospirillum based on 23S-rRNA sequences. Symbiosis, 13, 27–35.

    CAS  Google Scholar 

  • Kloepper, J., & Schroth, M. (1981). Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopatology, 71, 642–644.

    Article  Google Scholar 

  • Kloepper, J., Lifshitz, R., & Zablotowicz, R. (1989). Free-living bacteria inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 39–44.

    Article  Google Scholar 

  • Kolb, W., & Martin, P. (1985). Response of plant roots to inoculation with Azospirillum brasilense and to application of indoleacetic acid. In W. Klingmüller (Ed.), Azospirillum III: Genetics, physiology, ecology (pp. 215–221). Berlin: Springer.

    Chapter  Google Scholar 

  • Kucey, R. M. N. (1988). Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. The Journal of Applied Bacteriology, 64, 187–196.

    Article  CAS  Google Scholar 

  • Lavrinenko, K., Chernousova, E., Gridneva, E., Dubinina, G., Akimov, V., Kuever, J., Lysenko, A., & Grabovich, M. (2010). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. International Journal of Systematic and Evolutionary Microbiology, 60, 2832–2837.

    Google Scholar 

  • Lin, S. Y., Young, C. C., Hupfer, H., Siering, C., Arun, A. B., Chen, W. M., Lai, W. A., Shen, F. T., Rekha, P. D., & Yassin, A. F. (2009). Azospirillum picis sp. nov., isolated from discarded tar. International Journal of Systematic and Evolutionary Microbiology, 59, 761–765.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Shen, F. T., & Young, C. C. (2011). Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie Van Leeuwenhoek, 99(4), 837–844.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Shen, F. T., Young, L., Sen Zhu, Z. L., Chen, W. M., & Young, C. C. (2012). Azospirillum formosense sp. nov., a diazotroph from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 62, 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Liu, Y. C., Hameed, A., Hsu, Y. H., Lai, W. A., Shen, F. T., & Young, C. C. (2013). Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. International Journal of Systematic and Evolutionary Microbiology, 63, 3762–3768.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Hameed, A., Shen, F. T., Liu, Y. C., Hsu, Y. H., Shahina, M., Lai, W. A., & Young, C. C. (2014). Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie Van Leeuwenhoek, 105, 1149–1162.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. Y., Hameed, A., Liu, Y. C., Hsu, Y. H., Lai, W. A., Shen, F. T., & Young, C. C. (2015). Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 65(12), 4601–4607.

    Article  CAS  PubMed  Google Scholar 

  • Magalhães, F., Baldani, J., Souto, S., et al. (1983). A new acid-tolerant Azospirillum species. Anais da Academia Brasileira de Ciências, 55, 417–430.

    Google Scholar 

  • Maroniche, G. A., García, J. E., Salcedo, F., & Creus, C. M. (2016). Molecular identification of Azospirillum spp.: Limitations of 16S rRNA and qualities of rpoD as genetic markers. Microbiological Research, 195, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Maroniche, G. A., García, J. E., Salcedo, F., & Creus, C. M. (2017). Molecular identification of Azospirillum spp.: Limitations of 16S rRNA and qualities of rpoD as genetic markers. Microbiological Research, 195, 1–10.

    Google Scholar 

  • Martínez-Morales, L., Soto-Urzua, L., Baca, B., & Sanchez-Ahedo, J. (2003). Indole-3- butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiology Letters, 228, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz, S., Weselowski, B., & Lazarovits, G. (2007a). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. International Journal of Systematic and Evolutionary Microbiology, 57(3), 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Mehnaz, S., Weselowski, B., & Lazarovits, G. (2007b). Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. International Journal of Systematic and Evolutionary Microbiology, 57(12), 2805–2809.

    Article  CAS  PubMed  Google Scholar 

  • Molina, R., Rivera, D., Mora, V., López, G., Rosas, S., Spaepen, S., Vanderleyden, J., & Cassán, F. (2018). Regulation of IAA biosynthesis in Azospirillum brasilense under environmental stress conditions. Current Microbiology, 75(10), 1408–1418.

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero, C., Creus, C., Lanteri, M., Correa-Aragunde, N., Lombardo, M., Barassi, C., & Lamattina, L. (2007). Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Advances in Botanical Research, 46, 1–33.

    Article  CAS  Google Scholar 

  • Molina-Favero, C., Creus, C., Simontacchi, M., Puntarulo, S., & Lamattina, L. (2008). Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions, 21(7), 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, L., & Knowles, R. (1978). Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense growth in continuous culture. Canadian Journal of Microbiology, 24, 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  • Okon, Y., & Kapulnik, Y. (1986). Development and function of Azospirillum-inoculated roots. Plant and Soil, 90, 3–16.

    Article  CAS  Google Scholar 

  • Okon, Y., & Labandera-Gonzalez, C. (1994). Agronomic applications of Azospirillum: an evaluation of 20 years’ worldwide field inoculation. Soil Biology and Biochemistry, 26, 1591–1606.

    Article  CAS  Google Scholar 

  • Okon, Y., Heytler, P., & Hardy, W. (1983). N2 fixation by Azospirillum brasilense and its incorporation into host Setaria italica. Applied and Environmental Microbiology, 46, 694–697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnier, I., Raoult, D., & La Scola, B. (2008). Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environmental Microbiology, 10, 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa, F., & Yates, G. (1984). Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntrC (glnG) type genes. FEMS Microbiology Letters, 23, 95–101.

    Article  CAS  Google Scholar 

  • Peng, G., Wang, H., Zhang, G., Hou, W., Liu, Y., Wang, E. T., & Tan, Z. (2006). Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. International Journal of Systematic and Evolutionary Microbiology, 56(6), 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  • Perrig, D., Boiero, L., Masciarelli, O., Penna, C., Cassán, F., & Luna, V. (2007). Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Applied Microbiology and Biotechnology, 75, 1143–1150.

    Article  CAS  PubMed  Google Scholar 

  • Piccoli, P., Masciarelli, O., & Bottini, R. (1996). Metabolism of 17,17 [2H2]-gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis, 21, 167–178.

    Google Scholar 

  • Prinsen, E., Costacurta, A., Michiels, K., Vanderleyden, J., & Van Onckelen, H. (1993). Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular Plant-Microbe Interactions Journal, 6, 609–615.

    Article  CAS  Google Scholar 

  • Priya, R. P., Selastin, A. R., Gopalaswamy, G., & Balachandar, D. (2016). Development of sequence-characterized amplified region (SCAR) markers as a quality standard of inoculants based on Azospirillum. Archives of Microbiology, 198, 257–267.

    Article  CAS  Google Scholar 

  • Puente, M. L., Gualpa, J. L., López, G. A., Molina, R. M., Carletti, S. M., & Cassán, F. (2017). The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis, 1–9.

    Google Scholar 

  • Puente, M. L., Zawoznik, M., de Sabando, M. L., Pérez, G., Gualpa, J. L., Carletti, S. M., & Cassán, F. (2018). Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis, 1–7.

    Google Scholar 

  • Pujol, M., Badosa, E., Manceau, C., & Montesinos, E. (2006). Assessment of the environmental fate of the biological control agent of fire blight, Pseudomonas fluorescens EPS62e, on apple by culture and real-time PCR methods. Applied and Environmental Microbiology, 72(4), 2421–2427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielemans, S., & De Ley, J. (1987). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). International Journal of Systematic Bacteriology, 37(1), 43–51.

    Article  Google Scholar 

  • Remans, R., Croonenborghs, A., Torres Gutierrez, R., Michiels, J., & Vanderleyden, J. (2007). Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. In P. A. H. M. Bakker, J. M. Raaijmakers, G. Bloemberg, M. Höfte, P. Lemanceau, & B. M. Cooke (Eds.), New perspectives and approaches in plant growth-promoting rhizobacteria research. Dordrecht: Springer.

    Google Scholar 

  • Remans, R., Beebe, S., Blair, M., Marique, G., Tovar, E., Rao, I., Croonenbarghs, A., Torres-Gutierrez, R., El-Idoweity, M., Michiels, J., & Vanderlyden, J. (2008a). Physiological and genetic analysis of root responsiveness to auxin-producing plant growth promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil, 302, 149–161.

    Article  CAS  Google Scholar 

  • Remans, R., Schelkens, S., Hernandez, G., Garcia, A., Luis Reyes, J., Mendez, N., Toscano, V., Mulling, M., Galvez, L., & Vanderleyden, J. (2008b). Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in cube. Plant and Soil, 312, 25–37.

    Article  CAS  Google Scholar 

  • Rivera, D., Revale, S., Molina, R., Gualpa, J., Puente, M., Maroniche, G., Paris, G., Baker, D., Clavijo, B., McLay, K., Spaepen, S., Perticari, A., Vazquez, M., Wisniewski-Dyé, F., Watkins, C., Martínez-Abarca, F., Vanderleyden, J., & Cassan, F. (2014). Complete genome sequence of the model rhizosphere strain Azospirillum brasilense Az39, successfully applied in agriculture. Genome Announcements, 24(4), pii:e00683-14.

    Google Scholar 

  • Rivera, D., Mora, V., Lopez, G., Rosas, S., Spaepen, S., Vanderleyden, J., & Cassán, F. (2018). New insights into the indole-3-acetic acid metabolism in Azospirillum brasilense. Journal of Applied Microbiology., 125(6), 1774–1785.

    Google Scholar 

  • Rodriguez-Cáceres, E. A., Gonzalez-Anta, G., Lopez, J. R., Di Ciocco, C., Pacheco-Basurco, J. C., & Parada, J. L. (1994). Azospirillum brasilense and Bacillus polymyxa inoculation in yield response of field grown wheat in an Argentine semiarid region. Arid Soil Research and Rehabilitation, 10, 13–20.

    Article  Google Scholar 

  • Rodriguez-Cáceres, E., Di Ciocco, C., & Carletti, S. (2008). 25 años de Investigaciones de Azospirillum brasiliense AZ39 en Argentina. In F. D. Cassan & I. Garcia de Salamone (Eds.), Azospirillum sp.: Cell physiology, plant interactions and agronomic research in Argentina (pp. 179–188). Buenos Aires: Asociación Argentina de Microbiología.

    Google Scholar 

  • Sahoo, R. K., Ansari, M. W., Pradhan, M., et al. (2014). Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma, 251, 943–953.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, W., Martin, P., Omay, H., & Bangerth, F. (1988). Influence of Azospirillum brasilense on nodulation of legumes. In W. Klingmüller (Ed.), Azospirillim IV. Genetics, physiology, ecology (pp. 92–100). Heidelberg: Springer.

    Google Scholar 

  • Shime-Hattori, A., Kobayashi, S., Ikeda, S., Asano, R., Shime, H., & Shinano, T. (2011). A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. Journal of Applied Microbiology, 111, 915–924.

    Article  CAS  PubMed  Google Scholar 

  • Somers, E., Ptacek, D., Gysegom, P., Srinivasan, M., & Vanderleyden, J. (2005). Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Applied and Environmental Microbiology, 71, 1803–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31, 425–448.

    Article  CAS  PubMed  Google Scholar 

  • Spaepen, S., Dobbelaere, S., Croonenborghs, A., & Vanderleyden, J. (2008). Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, 312, 15.

    Article  CAS  Google Scholar 

  • Star, L., Matan, O., Dardanelli, M., Kapulnik, Y., Burdman, S., & Okon, Y. (2012). The Vicia sativa spp. nigra-Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant and Soil, 356, 165–174.

    Article  CAS  Google Scholar 

  • Stets, M. I., Campbell, M., Souza, M., Pedrosa, D. O., Schmid, M., Hartmann, A., & Cruz, M. (2015). Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Applied and Environmental Microbiology, 81(19), 6700–6709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffels, M., Castellanos, T., & Hartmann, A. (2001). Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Systematic and Applied Microbiology, 24, 83–97.

    Article  CAS  PubMed  Google Scholar 

  • Strzelczyk, E., Kamper, M., & Li, C. (1994). Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiological Research, 149, 55–60.

    Article  CAS  Google Scholar 

  • Tarrand, J. J., Krieg, N. R., & Döbereiner, J. (1978). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology, 24(8), 967–980.

    Article  CAS  PubMed  Google Scholar 

  • Teale, W., Paponov, I., & Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nature Reviews. Molecular Cell Biology, 7, 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Teyssier, C., Marchandin, H., De Buochberg, M. S., Ramuz, M., & Jumas-Bilak, E. (2003). Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. Journal of Bacteriology, 185(9), 2901–2909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuler, D., Floh, E., Handro, W., & Barbosa, H. (2003). Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Letters in Applied Microbiology, 37, 174–178.

    Article  CAS  PubMed  Google Scholar 

  • Tian, R.-M., Cai, L., Zhang, W.-P., Cao, H.-L., & Qian, P.-Y. (2015). Rare events of intragenus and intraspecies horizontal transfer of the 16S rRNA gene. Genome Biology and Evolution, 7(8), 2310–2320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tien, T., Gaskins, M., & Hubbell, D. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, 37, 1016–1024.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi, S., & Singh, D. K. (2014). Azospirillum himalayense sp. nov., a nifH bacterium isolated from Himalayan valley soil, India. Annals of Microbiology, 64(1), 259–266.

    Article  CAS  Google Scholar 

  • Vande Broek, A., Lambrecht, M., Eggermont, K., & Vanderleyden, J. (1999). Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Journal of Bacteriology, 181(4), 1338–1342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veresoglou, S., & Menexes, G. (2010). Impact of inoculation with Azospirillum spp. On growth properties and seed yield of wheat: A meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant and Soil, 337, 469–480.

    Article  CAS  Google Scholar 

  • Wisniewski-Dyé, F., Borziak, K., Khalsa-Moyers, G., Alexandre, G., Sukharnikov, L. O., Wuichet, K., Hurst, G. B., McDonald, W. H., Robertson, J. S., Barbe, V., Calteau, A., Rouy, Z., Mangenot, S., Prigent-Combaret, C., Normand, P., Boyer, M., Siguier, P., Dessaux, Y., Elmerich, C., Condemine, G., Krishnen, G., Kennedy, I., Paterson, A. H., González, V., Mavingui, P., & Zhulin, I. B. (2011). Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genetics, 7(2), e1002430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wisniewski-Dyé, F., Lozano, L., Acosta-Cruz, E., Borland, S., Drogue, B., Prigent-Combaret, C., Rouy, Z., Barbe, V., Mendoza Herrera, A. M., González, V., & Mavingui, P. (2012). Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel), 3, 576–602.

    Article  CAS  Google Scholar 

  • Xie, C. H., & Yokota, A. (2005). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1435–1438.

    Article  CAS  PubMed  Google Scholar 

  • Young, C. C., Hupfer, H., Siering, C., Ho, M. J., Arun, A. B., Lai, W. A., et al. (2008). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 58(4), 959–963.

    Article  CAS  PubMed  Google Scholar 

  • Young, C. C., Lin, S. Y., Hameed, A., Liu, Y. C., Hsu, Y. H., Huang, H. I., & Lai, W. A. (2016). Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. International Journal of Systematic and Evolutionary Microbiology, 66, 1453–1458.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Wei, W., Wang, X., Xu, L., & Lai, R. (2009). Azospirillum palatum sp. nov., isolated from forest soil in Zhejiang province, China. The Journal of General and Applied Microbiology, 55(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Han, L., Wang, Y., Yang, G., Li, Z., & Hu, P. (2013). Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. International Journal of Systematic and Evolutionary Microbiology, 63, 2618–2624.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, W., Roeben, K., & Bothe, H. (1988). An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta, 176(1988), 333–334.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), and Fondo Nacional para la Investigación Científico tecnológica (FONCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Cassán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coniglio, A., Mora, V., Puente, M., Cassán, F. (2019). Azospirillum as Biofertilizer for Sustainable Agriculture: Azospirillum brasilense AZ39 as a Model of PGPR and Field Traceability. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_4

Download citation

Publish with us

Policies and ethics