Skip to main content

Rhizobia Promote Rice (Oryza sativa L.) Growth: First Evidence in Cuba

  • Chapter
  • First Online:

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

There are few studies on rhizobia from rice plants. Thus, the objectives of this study were to characterize rhizobia from the rhizosphere of rice plants cv. INCA LP-5 and to assess the effect of their inoculation on rice growth under controlled conditions. Eleven rhizobia isolates were studied to determine if they were capable of producing polyhydroxybutyrate, indolic compounds, ammonium and phosphate solubilization. The effect of rhizobial inoculation on height, shoot dry weight, root dry weight root and shoot/root dry weight of rice plants was assessed too. Isolate Rf7 produced 9.6 mg L−1 of polyhydroxybutyrate. When tryptophan concentrations were increased in the culture medium, all isolates, except Rf1, showed increased production of indolic compounds up to 125 μg ml−1 with Rpd38 isolate. All isolates produced ammonium from amino acids and Rpd8 produced 8.4 μg ml−1 of ammonium. Rf7 and Rpr2 solubilized tricalcium phosphate. Isolates Rf7, Rpr1, Rpr2 and Rpr11 increased significantly the shoot plant growth at 50 days after inoculation. The results obtained provide the first evidence on the plant-growth promotion effect of rhizobia on rice in Cuba.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acevedo, M. A., Castrillo, W. A., & Belmonte, U. C. (2006). Origen, evolución y diversidad del arroz. Agronomía Trop, 56(2), 151–170.

    Google Scholar 

  • Aneja, P., Zachertowska, A., & Charles, T. C. (2006). Comparison of the symbiotic and competition phenotypes of Sinorhizobium meliloti PHB synthesis and degradation pathway mutants. Canadian Journal of Microbiology, 51(7), 599–604.

    Article  Google Scholar 

  • Arumi, J. L., Núñez, J., Salgado, L., et al. (2006). Evaluación del riego de contaminación con nitrato de pozos de suministro de agua potable rural en Chile. Revista Panamericana Salud Pública, 20(6), 385–392.

    Article  Google Scholar 

  • Awais, R., Ashraf, M., & Mansoor. (2018). Response of foliar-applied nutrient solution with and without soil-applied fertilizers on growth and yield of mung bean. Journal of Plant Nutrition, 41(9), 1083–1093.

    Article  Google Scholar 

  • Azcón- Vieto, J., & Talón, M. (2013). Fundamentos de Fisiología Vegetal. Valencia.

    Google Scholar 

  • Bacilio, M., Aguilar, S., Ventura, E., et al. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277.

    Article  Google Scholar 

  • Bashan, Y., Kamnev, A. A., & de-Bashan, L. E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, 49, 465–479.

    Article  CAS  Google Scholar 

  • Bergersen, F. J., Peoples, M. B., & Turner, G. L. (1991). A role for polybhydroxybutyrate in bacteroids of soybean nodules. Proceedings of the Royal Society of London B, 245, 59–64.

    Article  CAS  Google Scholar 

  • Chi, F., Shen, S., Cheng, H., et al. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71(11), 7271–7278.

    Article  CAS  Google Scholar 

  • Demutskaya, L. N., & Kalinichenko, I. E. (2010). Photometric determination of ammonium nitrogen with the nessler reagent in drinking water after its chlorination. Journal of Water Chemistry and Technology, 32(2), 90–94.

    Article  Google Scholar 

  • Dhingra, H. K., & Priya, K. (2013). Physiological and molecular identification of polyhydroxybutyrates (PHB) producing microorganisms isolated from root nodules of leguminous plants. African Journal of Microbiology Research, 7(30), 3961–3967.

    CAS  Google Scholar 

  • Dubler, M. R., Sacool da Sá, E. L., & Goulart, R. (2011). Caracterización e influencia de rizobios aislados de alfalfa en la geminación y crecimiento de plántulas de arroz. Ciencia Rural, 41(10), 1738–1743.

    Article  Google Scholar 

  • Duran, S., Du Pont, G., Huerta-Zepeda, A., et al. (1995). The role of glutaminase in Rhizobium etli: Studies with a new mutant. Microbiology, 141, 2883–2889.

    Article  CAS  Google Scholar 

  • Finkelstein, R. A., Boesman-Finkelstein, M., Sengupta, D. K., et al. (1997). Colonial opacity variations among the Cholera genic vibrios. Microbiology, 143, 23–34.

    Article  CAS  Google Scholar 

  • Flores, J. D., Menéndez, E., Rivera, L. P., et al. (2013). Use of Rhizobium leguminosarum as a potential biofertilizer for Lactucasativa and Daucuscarota crops. Journal of Plant Nutrition and Soil Science, 176, 876–882.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2017). FAO rice market monitor. http://www.fao.org. Accessed 11 Apr 2018.

  • Ford, Y., Taylor, J., Blake, P., et al. (2002). Gibberellin A3 stimulates adventitious rooting of cuttings from cherry (Prunus avium). Plant Growth Regulation, 3(2), 127–133.

    Article  Google Scholar 

  • Graham, P. H., Viteri, S. E., Mackie, F., et al. (1982). Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Research, 5, 121–128.

    Article  Google Scholar 

  • Gray, C. D., & Kinnear, P. R. (2012). IBM SPSS statistics 19 made simple. Hove/New York: Psychology Press.

    Book  Google Scholar 

  • Halder, A. K., Mishra, A. K., & Bhattacharyya, P. (1990). Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology, 36(2), 81–92.

    Article  CAS  Google Scholar 

  • Hamieh, A., Olama, Z., & Holail, H. (2013). Microbial production of polyhydroxybutyrate, a biodegradable plastic using agro-industrial waste products. Global Advanced Research Journal of Microbiology, 2(3), 054–064.

    Google Scholar 

  • Hasan, M., Bano, A., Hassan, S. G., et al. (2014). Enhancement of rice growth and production of growth-promoting phytohormones by inoculation with rhizobium and other rhizobacteria. World Applied Sciences Journal, 31(10), 1734–1743.

    Google Scholar 

  • Hernández, I., & Nápoles, M. C. (2017). Rizobios residentes en la rizosfera de plantas de arroz (Oryza sativa L.) cultivar INCA LP-5. Cultivos Tropicales, 38(1), 39–49.

    Google Scholar 

  • Kadouri, D., Jurkevitch, E., & Okon, Y. (2003). Involvement of their serve material poly-b-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Applied and Environmental Microbiology, 69, 3244–3250.

    Article  CAS  Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agricultura. A review. Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  • Long, S. R. (2001). Genes and signals in the Rhizobium-legume symbiosis. Plant Physiology, 125, 69–72.

    Article  CAS  Google Scholar 

  • López, B. R., Bashan, Y., & Bacilio, M. (2011). Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Archives of Microbiology, 193, 527–541.

    Article  Google Scholar 

  • Lu, C. D., & Abdelal, A. T. (2001). The gdhB gene of Pseudomona aeruginosa encodes an arginine-inducible NAD-dependent glutamate dehydrogenase which is subject to allosteric regulation. Journal of Bacteriology, 183, 490–499.

    Article  CAS  Google Scholar 

  • Merzaeva, O. V., & Shirokikh, I. G. (2010). The production of auxins by the endophytic bacteria of winter rye. Applied Biochemistry and Microbiology, 46(1), 44–50.

    Article  CAS  Google Scholar 

  • Mirza, M. S., Ahmad, W., Latif, F., et al. (2001). Isolation, partial characterization and the effect of plant growth-promoting bacteria (PGPB) on micro- propagated sugarcane in vitro. Plant and Soil, 237, 47–54.

    Article  CAS  Google Scholar 

  • Miyares, M., Torres, D., Padrón, S., et al. (2015). Aplicación del reactivo de Neesler en la cuantificación de amonio para las fermentaciones de productos biotecnológicos. VacciMonitor, 24(1), 33–44.

    Google Scholar 

  • Mohite, B. (2013). Isolation and characterization of indolic acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649.

    Google Scholar 

  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265–270.

    Article  CAS  Google Scholar 

  • Nonhebel, H., Cooney, T., & Simpson, R. (1993). The route, control and compartmentation of auxin synthesis. Australian Journal of Plant Physiology, 20, 527–539.

    CAS  Google Scholar 

  • Ozdal, M., & Kurbanoglu, E. B. (2018). Citric acid production by Aspergillus niger from agro-industrial by-products: Molasses and chicken feather peptone. Waste and Biomass Valorization, 9(47), 1–10.

    Google Scholar 

  • Patriarca, E. J., Tatè, R., & Laccarino, M. (2002). Key role of bacterial NH4 + metabolism in rhizobium-plant symbiosis. Microbiology and Molecular Biology Reviews, 66(2), 203–222.

    Article  CAS  Google Scholar 

  • Patten, C., & Glick, B. (2002). Role of Pseudomonas putida indolic acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  CAS  Google Scholar 

  • Pérez, N., González, M. C., & Castro, R. I. (2002). Validación de nuevas variedades cubanas de arroz (Oryza sativa L.) para la provincia de Pinar del Río. Cultivos Tropicales, 23(2), 51–54.

    Google Scholar 

  • Perrine, F. M., Hocart, C. H., Hynes, M. F., et al. (2005). Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti1021 affect the growth and development of young rice seedlings. Environmental Microbiology, 7(11), 1826–1838.

    Article  CAS  Google Scholar 

  • Ratcliff, W. C., & Denison, R. F. (2010). Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Current Biology, 20, 1740–1744.

    Article  CAS  Google Scholar 

  • Raut, V., Shaikh, I., Naphade, B., et al. (2017). Plant growth promotion using microbial IAA producers in conjunction with azolla: a novel approach. Chemical and Biological Technologies in Agriculture, 4(1), 1–11.

    Article  Google Scholar 

  • Rivero, L. E., & Suárez, E. (2014). Instructivo Técnico. Cultivo de Arroz. La Habana: Instituto de Investigaciones de Granos.

    Google Scholar 

  • Sarkar, A., Kumar, P., Pramanik, K., et al. (2018). Ahalotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 169, 20–32.

    Article  CAS  Google Scholar 

  • Sessitsch, A., Howieson, J. G., Perret, X., et al. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21, 323–378.

    Article  CAS  Google Scholar 

  • Sigarroa, A. (1985). Biometría y Diseño Experimental. La Habana.

    Google Scholar 

  • Song, W., Sun, H., Li, J., et al. (2013). Auxin distribution is differentially affected by nitrate in roots of two rice cultivars differing in responsiveness to nitrogen. Annals of Botany-London, 112, 1383–1393.

    Article  CAS  Google Scholar 

  • Trainer, M., & Charles, T. (2006). The role of PHB metabolism in the simbiosis of rhizobia with legumes. Applied Microbiology and Biotechnology, 1, 377–386.

    Article  Google Scholar 

  • Vincent, J. M. (Ed.). (1970). A manual for the practical study of root-nodule bacteria. London: Blackwell.

    Google Scholar 

  • Xuan, X., Chunmei, M., Shoukun, D., et al. (2017). Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Plant Nutrition, 63(5), 470–482.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to PhD Inés M. Reynaldo Escobar of the National Institute of Agricultural Science for her valuable support in the plant physiology study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Hernández Forte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández Forte, I., Nápoles García, M.C. (2019). Rhizobia Promote Rice (Oryza sativa L.) Growth: First Evidence in Cuba. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_10

Download citation

Publish with us

Policies and ethics