Skip to main content

Pathogenic Mechanisms of Uropathogens

  • Chapter
  • First Online:
The Role of Bacteria in Urology

Abstract

Uropathogens utilize a number of virulence mechanisms to enter and cause infection within the urinary tract. These factors promote bacterial colonization, survival and persistence and can greatly affect the degree of infection, duration and severity. Collectively, they target both host and pathogen, and several perform multiple functions across various cell types. While no one virulence factor (VF) is absolutely required for UTI development, research supports that a minimum threshold of factors promoting adherence, replication and immune evasion must be present to avoid rapid tract clearance. This review covers only a fraction of these factors and is focused almost entirely around uropathogenic strains of E. coli (UPEC), since they are responsible for the vast majority of community acquired UTIs. It illustrates the plethora of strategies uropathogens employ to colonize the host, evade its defences and thwart exogenous antimicrobial treatments, and highlights the need for novel and more targeted interventions, especially in complicated patients with indwelling devices and/or compromised immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are a number of highly prevalent antigens known as the Cromer blood group antigens that can be found on the host protein Decay Accelerating Factor (DAF), also known as CD55. One of these particular antigens (antigens can also be referred to as “epitopes”) is the Driori antigen (known as Dr). Since it was the first Dr antigen identified, it was given the superscript “a”. Of the Dr antigens, there is only Dra. Other members of the group possess multiple similar subtypes and as such are labeled a, b, c, etc. (Tca, Tcb, Tcc).

References

  1. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin N Am. 2014;28(1):1–13.

    Article  Google Scholar 

  2. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol. 2000;290(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  4. Rosen DA, Pinkner JS, Jones JM, Walker JN, Clegg S, Hultgren SJ. Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun. 2008;76:3337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sillanpää J, Chang C, Singh K, et al. Contribution of individual Ebp pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS One. 2013;8(7):e68813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pellegrino R, Scavone P, Umpiérrez A, Maskell DJ, Zunino P. Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract. Pathog Dis. 2013;67:104–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mydock-McGrane L, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin Drug Discovery. 2017;12(7):711–31.

    Article  CAS  Google Scholar 

  8. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. Bacterial adhesion to target cells enhanced by shear force. Cell. 2002;109:913–23.

    Article  CAS  PubMed  Google Scholar 

  9. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog. 2007;3(7):e100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother. 2012;56(9):4738–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci. 1985;82:5724–7. https://doi.org/10.1073/pnas.82.17.5724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klemm P. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 1986;5:1389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gally DL, Bogan JA, Eisenstein BI, Blomfield IC. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol. 1993;175(19):6186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bateman SL, Stapleton AE, Stamm WE, Hooton TM, Seed PC. The type 1 pili regulator gene fimX and pathogenicity island PAI-X as molecular markers of uropathogenic Escherichia coli. Microbiology. 2013;159(Pt.8):1606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect Immun. 2002;70(3):1391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sidaway P. Infection: exposure to human urine decreases type 1 pili expression in uropathogenic Escherichia coli. Nat Rev Urol. 2015;12:422.

    Article  PubMed  Google Scholar 

  17. Schwan W, Beck M, Hung C, Hultgren S. Differential regulation of Escherichia coli fim genes following binding to mannose receptors. J Pathol. 2018;2018:2897581.

    Google Scholar 

  18. Eberly A, Floyd K, Beebout C, Colling S, Fitzgerald M, Stratton C, et al. Biofilm formation by uropathogenic Escherichia coli is favored under oxygen conditions that mimic the bladder environment. Int J Mol Sci. 2017;8(10):2077.

    Article  CAS  Google Scholar 

  19. Barberi NL, Ncholson B, Hussein A, Cai W, Wannemuehler YM, Dellanna G, Logue CM, Horn F, Nolan LK, Li G. FNR regulates expression of important virulence factors contributing to pathogenicity or uropathogenic Escherichia coli. Infect Immun. 2014;82(12):5086–98.

    Article  CAS  Google Scholar 

  20. Orskov I, Ferencz A, Orskov F. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet. 1980;1(8173):887.

    Article  CAS  PubMed  Google Scholar 

  21. Parkkinen J, Virkola R, Korhonen TK. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins. Infect Immun. 1988;56:2623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Greene SE, Hibbing ME, Jenatka J, Chen SL, Hultgren SJ. Human urine decreases function and expression of type 1 pili in uropathogenic Escherichia coli. MBio. 2015;6(4):e00820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. J Infect Dis. 2016;213(3):386–94.

    Article  PubMed  Google Scholar 

  24. Reisner A, Maierl M, Jörger M, Krause R, Berger D, Haid A, et al. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J Bacteriol. 2014;196(5):931–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Raffi HS, Bates JM, Flournoy DJ, Kumar S. Tamm-Horsfall protein facilitates catheter associated urinary tract infection. BMC Res Notes. 2012;5:532.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wright KJ, Seed PC, Hultgren SJ. Development of intracellular bacterial communitis of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 2007;9(9):2230–41.

    Article  CAS  PubMed  Google Scholar 

  27. Conover MS, Hadjifrangiskou M, Malermo JJ, Hibbing ME, Dodson KW, Hultgren SJ. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. MBio. 2016;7(2):e00104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goller C, Seed P. Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: contribution to intracellular biofilm development. Virulence. 2010;1(4):333–7.

    Article  PubMed  Google Scholar 

  29. Kalas V, Pinkner JS, Hannan TJ, Hibbing ME, Dodson KW, Holehouse AS. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Sci Adv. 2017;3(2):e1601944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Martinez J, Hultgren S. Requirement of Rho-family GTPases in the invasion of Type-1 piliated uropathogenic Escherichia coli. Cell Microbiol. 2002;4(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Liang FX, Kong XP. Characteristics of the phagocytic cup induced by uropathogenic Escherichia coli. J Histochem Cytochem. 2008;56(6):597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, Hultgren S. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci. 2015;112(8):E871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leffer H, Svanborg-Eden C. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun. 1981;34(3):920–9.

    Google Scholar 

  34. Plos K, Connell H, Jodal U, Marklund BI, Marild S, Wettergren B, Svanborg C. Intestinal carriage of P fimbriated Escherichia coli and the susceptibility to urinary tract infection in young children. J Infect Dis. 1995;171(3):625–31.

    Article  CAS  PubMed  Google Scholar 

  35. Vaisanen V, Elo J, Tallgren LG. Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet. 1981;2(8260–8261):1366–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wullt B, Bergsten G, Connell H, Rollano P, Gebretsadik N, Hull R, Svanborg C. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Mol Microbiol. 2000;38(3):456–64.

    Article  CAS  PubMed  Google Scholar 

  37. Abbott KC, Oliver JD, Hypolite I, et al. Hospitalizations for bacterial septicemia after renal transplantation in the United States. Am J Nephrol. 2001;21(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  38. Melican K, Sandoval RM, KAder A, Josefsson L, Tanner GA, et al. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 2011;7(2):e1001298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004;2(2):123–40.

    Article  CAS  PubMed  Google Scholar 

  40. Fischer H, Ellstrom P, Ekstrom K. Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4. Cell Microbiol. 2007;9(5):1239–51.

    Article  CAS  PubMed  Google Scholar 

  41. Bergsten G, Wullt B, Svanborg C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int J Med Microbiol. 2005;295(6–7):487–502.

    Article  CAS  PubMed  Google Scholar 

  42. Lane MC, Mobley HLT. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 2007;72(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  43. Rice JC, Peng T, Spence JS, Wang HQ, Goldblum RM, Corthésy B, Nowicki BJ. Pyelonephritic Escherichia coli expressing P fimbriae decrease immune response of the mouse kidney. J Am Soc Nephrol. 2005;16(12):3583–91.

    Article  CAS  PubMed  Google Scholar 

  44. Ashkar AA, Mossman KL, Coombes BK, Gyles CL, Mackenzie R. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling. PLoS Pathog. 2008;4(12):e1000233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tewari R, Ikeda T, Malaviya R, MacGregor JI, Little JR, Hultgren SJ, Abraham SN. The PapG tip adhesin of P fimbriae protects Escherichia coli from neutrophil bactericidal activity. Infect Immun. 1994;62(12):5296–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulvey MA. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 2002;4(5):257–71.

    Article  CAS  PubMed  Google Scholar 

  47. Hacker JS, Morschhauser JS, Fimbriae FLC. Fimbriae, adhesion, genetics, biogenesis, and vaccines. Boca Raton: CRC Press; 1994. p. 27–36.

    Google Scholar 

  48. Marre R, Kreft B, Hacker J. Genetically engineered S and F1C fimbriae differ in their contribution to adherence of Escherichia coli to cultured renal tubular cells. Infect Immun. 1990;58(10):3434–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dhakal BK, Kulesus RR, Mulvey MA. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Investig. 2008;38(s2):2–11.

    Article  CAS  Google Scholar 

  50. Parkkinen J, Rogers GN, Korhonen T, Dahr W, Finne J. Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Infect Immun. 1986;54(1):37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Khan AS, Kniep B, Oelschlaeger TA, Van Die I, Korhonen T, Hacker J. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect Immun. 2000;68(6):3541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Korhonen TK, Valtonen MV, Parkkinen J, Vaisanen-Rhen V, Finne J, Orskov F, Svenson SB, Makela PH. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sapsis and meningitis. Infect Immun. 1985;42(2):486–91.

    Google Scholar 

  53. Nowicki B, Hull R, Moulds J. Use of the Dr hemagglutinin of uropathogenic Escherichia coli to differentiate normal from abnormal red cells in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1988;319(19):1289–90.

    Article  CAS  PubMed  Google Scholar 

  54. Nowicki B, Labigne A, Moseley S, Hull R, Hull S. The Dr hemagglutinin, afimbrial adhesins Afa-I and Afa-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun. 1990;58:279–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guignot J, Bernet-Camard MF, Poüs C, Plançon L, Le Bouguenec C, Servin AL. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect Immun. 2001;69(3):1856–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Plançon L, Du Merle L, Le Friec S, Gounon P, Jouve M, Guignot J, Servin A, Le Bouguénec C. Recognition of the cellular beta1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell Microbiol. 2003;5(10):681–93.

    Article  PubMed  CAS  Google Scholar 

  57. Korotkova N, Cota E, Lebedin Y, Monpouet S, Guignot J, Servin AL, et al. A subfamily of Dr adhesins of Escherichia coli bind independently to decay-accelerating factor and the N-domain of carcinoembryonic antigen. J Biol Chem. 2006;281(39):29120–30.

    Article  CAS  PubMed  Google Scholar 

  58. Berger CN, Billker O, Meyer TF, Servin AL, Kansau I. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol. 2004;52(4):963–83.

    Article  CAS  PubMed  Google Scholar 

  59. Selvarangan R, Goluszko P, Singhal J, Carnoy C, Moseley S, Hudson B, et al. Interaction of Dr adhesin with collagen type IV is a critical step in Escherichia coli renal persistence. Infect Immun. 2004;72(8):4827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zalewska B, Stangret J, Bury K, Wojciechowski M, Kur J, Piatek R. DAF- and collagen-binding properties of chimeric Dr fimbriae. Microbiology. 2007;153:2733–42.

    Article  CAS  PubMed  Google Scholar 

  61. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL, Jarrott RJ, Perugini MA, Whitten AE, Schembri MA. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci. 2014;111(1):457–62.

    Article  CAS  PubMed  Google Scholar 

  62. Battaglioli EJ, Goh KGK, Atruktsang TS, Schwartz K, Schembri MA, Welch RA. Identification and characterization of a phase-variable element that regulates the autotransporter UpaE in uropathogenic Escherichia coli. MBio. 2018;9(4):e01360–18.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reidl S, Lehmann A, Schiller R, Salam Khan A, Dobridt U. Impact of O-glycoslyation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43. Int J Med Microbiol. 2009;299(6):389–401.

    Article  CAS  PubMed  Google Scholar 

  64. Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HL. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun. 2012;80(2):493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He XL, Wang Q, Peng L, Qu YR, Puthiyakunnon S, Liu XL, Hui CY, Boddu S, Cao H, Huang SH. Role of uropathogenic Escherichia coli outer membrane protein T in pathogenesis of urinary tract infection. Pathog Dis. 2015;73(3):ftv006.

    Article  PubMed  CAS  Google Scholar 

  66. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.

    Article  CAS  PubMed  Google Scholar 

  67. Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13:20–6.

    Article  CAS  PubMed  Google Scholar 

  68. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301(5629):105–7.

    Article  CAS  PubMed  Google Scholar 

  69. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007;4(12):e329.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Laue H, Schenk A, Li H, et al. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology. 2016;152(10):2909–18.

    Article  CAS  Google Scholar 

  71. Schaffer JN, Norsworthy AN, Sun TT, Pearson MM. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc Natl Acad Sci U S A. 2016;113:4494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang L, Mah T. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol. 2008;190(13):4447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol. 2009;11(12):3073–86.

    Article  CAS  PubMed  Google Scholar 

  74. Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 2010;89(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control. 2004;32(3):177–83.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nicolle LE. Catheter associated urinary tract infections. Antimicrob Resist Infect Control. 2014;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Justice SS, Hung C, Theriot JA, Fletcher DA, Anderson GG, Footer MJ, Hultgren SJ. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A. 2004;101:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun. 2011;79(10):4250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luterbach CL, Forsyth VS, Engstrom MD, Mobley HLT. TosR-mediated regulation of adhesins and biofilm formation in uropathogenic Escherichia coli. mSphere. 2018;3(3):e00222–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Duraiswamy S, Chee JLY, Chen S, Yang E, Lees K, Chen SL. Purification of intracellular bacterial communities during experimental urinary tract infection reveals an abundant and viable bacterial reservoir. Infect Immun. 2018;86:e00740.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hunstad D, Justice S. Intracellular lifestyles and immune evasion strategies of uropathogenic Escherichia coli. Annu Rev Microbiol. 2010;64(1):203–21.

    Article  CAS  PubMed  Google Scholar 

  82. Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, Ernst RD, Rasko DA, Mobley HL. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci. 2014;111(51):18327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bielecki P, Muthukumarasamy U, Eckweiler D, Bielecka A, Pohl S, Schanz A, Niemeyer U, Oumeraci T, von Neuhoff N, Ghigo JM, Häussler S. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. MBio. 2014;5(4):e01075–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Robino L, Scavone P, Araujo L, Algorta G, Zunino P, Pírez MC, Vignoli R. Intracellular bacteria in the pathogenesis of Escherichia coli urinary tract infection in children. Clin Infect Dis. 2014;59(11):e158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berry RE, Klumpp DJ, Schaeffer AJ. Urothelial cultures support intracellular bacterial community formation by uropathogenic Escherichia coli. Infect Immun. 2009;77(7):2762–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev. 2012;36(3):616–48.

    Article  CAS  PubMed  Google Scholar 

  87. Blango MG, Mulvey MA. Persistence of uropathogenic Escherichia coli in the face of multiple anitbiotics. Antimicrob Agents Chemother. 2010;54(5):1855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun. 2001;69(7):4572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci U S A. 2006;103(38):14170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gengenbacher M, Rao SP, Pethe K, Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology. 2010;156(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  91. Rao SP, Alonso S, Rand L, Dick T, Pethe K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci. 2008;105(33):11945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dikshit N, Bist P, Fenion SN, Pulloor NK, Lin Chua CE, Scidmore MA, Carlyon JA, Tang BL, Chen SL, Sukumaran B. Intracellular uropathogenic E.coli exploits host rab35 for iron acquisition and survival within urinary bladder cells. PLoS Pathog. 2015;11(8):e1005083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wiles TJ, Kulesus RR, Mulvey MA. Orgins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol. 2008;85(1):11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bhakdi S, Mackman N, Menestrina G, Gray L, Hugo F, Seeger W, Holland IB. The hemolysin of Escherichia coli. Eur J Epidemiol. 1988;4(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  95. Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991;4:80–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boehm D, Welch R, Snyder I. Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun. 1990;58(6):1951–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ostolaza H, Goni FM. Interaction of the bacterial protein toxin alpha-haemolysin with model membranes: protein binding does not always lead to lytic activity. FRBS Lett. 1995;371(3):303–6.

    CAS  Google Scholar 

  98. Demirel L, Persson A, Brauner A, Sarndahl E, Kruse R, Persson K. Activation of the NLPR3 inflammasone pathway by uropathogenic Escherichia coli is virulence factor-dependent and influences colonization of bladder epithelial cells. Front Cell Infect Microbiol. 2018;8:81.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Murthy M, Phan A, Peters M, Nhu K, Welch N, Ulett R, et al. Regulation of hemolysin in uropathogenic Escherichia coli fine-tunes killing of human macrophages. Virulence. 2018;9(1):967–80.

    Article  CAS  Google Scholar 

  100. Dhakal B, Mulvey M. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe. 2012;11(1):58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysinform the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett. 1995;126(2):189–95.

    CAS  PubMed  Google Scholar 

  102. McNichol BA, Rasmussen SB, Carvalho HM, Meysick KC, O’Brien AD. Two domains of cytotoxic necrotizing factor type 1 bind the cellular receptor, Iaminin receptor precursor protein. Infect Immun. 2007;75(11):5095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmidt G, Sehr P, Wil M, Selzer J. Gln of Rho is deamindated by Escherichia coli cytotoxic necrotizing factor-1. Nature. 1997;387(6634):725–9.

    Article  CAS  PubMed  Google Scholar 

  104. Lerm M, Schmidt G, Goehring UM, Schirmer J, Aktories K. Identification of the region of rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor (CNF-1). J Biol Chem. 1999;274(41):28999–9904.

    Article  CAS  PubMed  Google Scholar 

  105. Gall-Mas L, Fabbri A, Namini MRJ, Givskov M, Fiorentini C, Krejsgaard T. The bacterial toxin CNF1 induces activation and maturation of human monocyte derived dendritic cells. Int J Mol Sci. 2018;19(5):e1408.

    Article  PubMed  CAS  Google Scholar 

  106. Yang H, Li Hunstad Q, Wang C, et al. Cytotoxic necrotizing factor 1 downregulates CD36 transcription in macrophages to induce inflammation during acute urinary tract infections. Front Immunol. 2018;9:1987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Davis J, Carvalho H, Rasmussen S, O’Brien A. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun. 2006;74(8):4401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davis JM, Rasmussen SB, O’Brien AD. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect Immun. 2005;73(9):5301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fiorentini C, Fabbei A, Flatau G, Donnell G, Matarrese P, Lemichez E, Faizano L, Boquet P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J Biol Chem. 1997;272(31):19532–7.

    Article  CAS  PubMed  Google Scholar 

  110. Winter WE, Bazydlo LA, Harris NS. The molecular biology of human iron metabolism. Lab Med Spring. 2014;45:92–102.

    Article  Google Scholar 

  111. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6(8):e1000949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with sidrophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–43.

    Article  CAS  PubMed  Google Scholar 

  113. Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol. 2017;13(9):1016–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Montgomerie JZ, Bindereif A, Neilands JB, Kalmanson GM, Guze LB. Association of hydroxamate siderophore (aerobactin) with Escherichia coli isolated from patients with bacteremia. Infect Immun. 1984;46(3):835–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bister B, Bischoff D, Nicholson GJ, Valdebento M, Schneider K, Winkelmann G, Hantke K, Sussmuth RD. The structure of salmochelins: C-glucoslyated enterobactins of Salmonella enterica. Biometals. 2004;17(4):471–81.

    Article  CAS  PubMed  Google Scholar 

  116. Smith KD. Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. Int J Biochem Cell Biol. 2007;39(10):1776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. O’Brien V, Hannan J, Nielsen V, Hultgren S. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr. 2016;49:42.

    Google Scholar 

  118. Mora D, Arioli S. Microbial urease in health and disease. PLoS Pathog. 2014;10(12):e1004472. https://doi.org/10.1371/journal.ppat.1004472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Griffith D. Struvite stones. Kidney Int. 1978;13:372–82.

    Article  CAS  PubMed  Google Scholar 

  120. Paniagua-Contreras GL, Monroy-Perez E, Rodriguez-Moctezuma JR, Dominguez-Trejo P, Vaca-Paniagua F, Vaca S. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli strains isolated from community-acquired urinary tract infection patients in Mexico. J Microbiol Immunol Infect. 2017;50(4):478–85.

    Article  PubMed  Google Scholar 

  121. Ramirez-Castillo FY, Moreno-Flores AC, Avelar-Gonzalez FJ, Marquez-Diaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross sectional study. Ann Clin Microbiol Antimicrob. 2018;17(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ali I, Rafaque Z, Ahmed S, Malik S, Dasti J. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Potohar region of Pakistan. Asian Pac J Trop Biomed. 2016;6(1):60–6.

    Article  Google Scholar 

  123. Dehabanipour R, Rastaghi S, Sedighi M, Maleki N, Faghri J. High prevalaence of multi-drug resistanc uropathogenic Escherichia coli strains, Isfahan. Iran J Nat Sci Biol Med. 2016;7(1):22–6.

    Article  CAS  Google Scholar 

  124. Harris S, Piotrowska M, Goldstone R, Qi R, Foster G, Dobrindt U, et al. Variant O89 O-antigen of E. coli is associated with group 1 capsule loci and multidrug resistance. Front Microbiol. 2018;31(9):2026.

    Article  Google Scholar 

  125. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond Ser B Biol Sci. 1980;289(1036):321–31.

    Article  CAS  Google Scholar 

  126. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu K, Klugman KP, Bonomo RA, Rice LB, McCormack JG, Yu VL. Outcome of cephalosporin treatment for serious infections ude to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol. 2001;39(6):2206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol. 2006;70(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  130. Morar M, Pengelly K, Koteva K, Wright G. Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemist. 2012;51(8):1740–175.

    Article  CAS  Google Scholar 

  131. Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49:3050–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr. 2014;2(5):0006-2013.

    Article  CAS  Google Scholar 

  133. Delcour A. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–16.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang G, Meredith T, Kahne D. On the essentiality of lipopolysaccharide to gram-negative bacteria. Curr Opin Microbiol. 2013;16(6):779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ahmed MAS, Bansal D, Acharya A, Elmi A, Hamid JM, Ahmed AMS, Chandra P, et al. Antimicirobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterbacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob Resist Infect Control. 2016;5:4.

    Article  Google Scholar 

  136. Kutasy B, Coyle D, Fossum M. Urinary tract infection in children: management in the era of antibiotic resistance-a pediatric urologist’s view. Eur Urol Focus. 2017;3(2–3):207–11.

    Article  PubMed  Google Scholar 

  137. Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli s trains. Antimicrob Resist Infect Control. 2018;7:118.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wong CKM, Kung K, Au-Doung PLW, Ip M, Lee N, Fung A, Wong SYS. Antibiotic resistance rates and physician antibiotic prescription patterns of uncomplicated urinary tract infections in southern Chinese primary care. PLoS One. 2017;12(5):e0177266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Waller TA, Pantin SAL, Yenior AL, Pujalte GGA. Urinary tract infection antibiotic resistance in the United States. Prim Care. 2018;45(3):455–66.

    Article  PubMed  Google Scholar 

  140. Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant gram-negative bacteria: report of the British society for antimicrobial chemotherapy/healthcare infection/British infection association joint working party. J Antimicrob Chemother. 2018;73(3):iii2–iii78.

    Article  CAS  PubMed  Google Scholar 

  141. Bigger JW. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 1944;244:497–500.

    Article  Google Scholar 

  142. Luidalepp H, Joers A, Kaldalu N, Tenson T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol. 2011;193(14):3598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–5.

    Article  CAS  PubMed  Google Scholar 

  144. Balaban NQ. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev. 2011;21(6):768–75.

    Article  CAS  PubMed  Google Scholar 

  145. Kussell E, Leibler S. Phenotypic diversity, population growth, and information in fluctuating environments. Science. 2005;309(5743):2075–8.

    Article  CAS  PubMed  Google Scholar 

  146. Dorr T, Lewis K, Vulic M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 2009;5(12):e1000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5:48–56.

    Article  CAS  PubMed  Google Scholar 

  148. Jayaraman R. Bacterial persistence: some new insights into an old phenomenon. J Biosci. 2008;33(5):795–805.

    Article  CAS  PubMed  Google Scholar 

  149. Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, Reid G. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob Agents Chemother. 2014;58(4):2089–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Cadieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Rourke, K., Cadieux, P.A. (2019). Pathogenic Mechanisms of Uropathogens. In: Lange, D., Scotland, K. (eds) The Role of Bacteria in Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-17542-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17542-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17541-2

  • Online ISBN: 978-3-030-17542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics