Skip to main content

Radioiodine Therapy of Benign Thyroid Diseases

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Thyrotoxicosis represents a clinical condition that results from excess thyroid hormone(s) levels and action in peripheral tissues, either with or without increased synthesis of thyroid hormone(s) by the gland. It has multiple different etiologies and potential therapies; therefore, an accurate diagnosis is mandatory for appropriate treatment.

131-Radioiodine has been used since 1941 to cure hyperthyroidism due to toxic thyroid disease [diffuse or (multi)-nodular].

From its first use, millions of people have been treated worldwide and today it represents the first example of “theranostic” radiotracer [(−ve)-beta electrons to obtain the therapeutic effect, gamma-emission to show its distribution in the gland].

131-Radioiodine therapy has two main aims: the first is to correct hyperthyroidism (by fixed or calculated dose) reaching a euthyroid state [the optimal result for patients affected by (multi)-nodular toxic disease] or a hypothyroid state (the optimal result for patients with diffuse toxic disease); the second is to reduce whole gland or toxic (multi)-nodular volume.

Despite RAI therapy being a safe and generally well-tolerated treatment, either acute or late side effects (e.g., radiation thyroiditis, sialadenitis, worsening or appearance of orbitopathy) may occur, principally related to insufficient clinical control of hyperthyroidism and active thyroid orbitopathy due to Graves’ disease.

The purpose of this chapter is to provide advice to nuclear medicine physicians in evaluating patients with benign thyroid disease for 131-radioiodine therapy.

Diagnosis of hyperthyroidism and clinical management, along with advantages, optimal activities, and possible side effects of 131-radioiodine therapy, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.

    Article  PubMed  Google Scholar 

  2. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev. 2008;29:76–131.

    Article  CAS  PubMed  Google Scholar 

  3. Burch HB. Overview of the clinical manifestations of thyrotoxicosis. In: Werner SC, Ingbar SC, editors. The thyroid. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 434–40.

    Google Scholar 

  4. Cooper DS. Hyperthyroidism. Lancet. 2003;362(9382):459–68.

    Article  CAS  PubMed  Google Scholar 

  5. Flynn RW, Macdonald TM, Morris AD, et al. The thyroid epidemiology, audit, and research study: thyroid dysfunction in the general population. J Clin Endocrinol Metab. 2004;8989:3879–84.

    Article  CAS  Google Scholar 

  6. Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol. 2013;78(5):768–76.

    Article  Google Scholar 

  7. Laurberg P, Bulow PI, Knudsen N, et al. Environmental iodine intake affects the type of non-malignant thyroid disease. Thyroid. 2001;11:457–69.

    Article  CAS  PubMed  Google Scholar 

  8. Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med. 2016;375:1552–65.

    Article  PubMed  Google Scholar 

  9. Bartalena L, Masiello E, Magri F, Veronesi G, Bianconi E, Zerbini F, et al. The phenotype of newly diagnosed Graves’ disease in Italy in recent years is milder than in the past: results of a large observational longitudinal study. J Endocrinol Investig. 2016;39:1445–51.

    Article  CAS  Google Scholar 

  10. Ruggeri R, Giuffrida G, Campennì A. Autoimmune endocrine disease. Minerva Endocrinol. 2018;43(3):305–22.

    PubMed  Google Scholar 

  11. Bahn RS. Mechanisms of disease: Graves’ ophthalmopathy. N Engl J Med. 2010;362(2):726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper G, Bynum M, Somers E. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33:197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boelaert K, Newby P, Simmonds M, Holder R, Carr-Smith J, Heward J, et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med. 2010;123:183.e1–9.

    Article  Google Scholar 

  14. Ruggeri R, Trimarchi F, Giuffrida G, Certo R, Cama E, Campennì A, et al. Autoimmune comorbidities in Hashimoto’s thyroiditis: different patterns of association in adulthood and childhood/adolescence. Eur J Endocrinol. 2017;176(2):133–41.

    Article  CAS  PubMed  Google Scholar 

  15. Aghini-Lombardi F, Antonangeli L, Martino E, et al. The spectrum of thyroid disorders in an iodinedeficient community: the Pescopagano survey. J Clin Endocrinol Metab. 1999;84:561–6.

    CAS  PubMed  Google Scholar 

  16. Ruggeri R, Campennì A, Sindoni A, Baldari S, Trimarchi F. Benvenga. Association of autonomously functioning thyroid nodules with Hashimoto’s thyroiditis: study on a large series of patients. Exp Clin Endocrinol Diabetes. 2011;119(10):621–7.

    Article  CAS  PubMed  Google Scholar 

  17. Giovanella L, D’Aurizio F, Campenni A, Ruggeri R, Baldari S, Verburg F, et al. Searching for the most effective thyrotropin (TSH) threshold to rule-out autonomously functioning thyroid nodules in iodine deficient regions. Endocrine. 2016;54:757–61.

    Article  CAS  PubMed  Google Scholar 

  18. Gozu H, Lublinghoff J, Bircan R, Paschke R. Genetics and phenomics of inherited and sporadic nonautoimmune hyperthyroidism. Mol Cell Endocrinol. 2010;322:125–34.

    Article  CAS  PubMed  Google Scholar 

  19. Tonacchera M, Chiovato L, Pinchera A, Agretti P, Fiore E, Cetani F, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab. 1998;83(2):492–8.

    CAS  PubMed  Google Scholar 

  20. Vicchio T, Giovinazzo S, Certo R, Cucinotta M, Micali C, Baldari S, et al. Lack of association between autonomously functioning thyroid nodules and germline polymorphisms of the thyrotropin receptor and gas genes in a mild to moderate iodine-deficient caucasian population. J Endocrinol Investig. 2017;37:625–30.

    Article  CAS  Google Scholar 

  21. Boelaert K, Torlinska B, Holder R, Franklyn J. Older subjects with hyperthyroidism present with a paucity of symptoms and signs: a large cross-sectional study. J Clin Endocrinol Metab. 2010;95(6):2715–26.

    Article  CAS  PubMed  Google Scholar 

  22. Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: a population-based study. Arch Intern Med. 2004;164(15):1675–8.

    Article  PubMed  Google Scholar 

  23. Ruggeri R, Trimarchi F, Biondi B. MANAGEMENT OF ENDOCRINE DISEASE: l-Thyroxine replacement therapy in the frail elderly: a challenge in clinical practice. Eur J Endocrinol. 2017;177(4):R199–217.

    Article  CAS  PubMed  Google Scholar 

  24. Walter MA, Briel M, Christ-Crain M, Bonnema SJ, Connell J, Cooper DS, et al. Effects of antithyroid drugs on radioiodine treatment: systematic review and meta-analysis of randomised controlled trials. BMJ. 2007;334(7592):514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jolanta MD, Bogsrud TV. Nuclear medicine in evaluation and therapy of nodular thyroid. In: Thyroid nodules. Switzerland: Springer International; 2018.

    Google Scholar 

  26. Silberstein E, Alavi A, Balon H, Clarke S, Divgi C, Gelfand MJ, et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012;53(10):1633–51.

    Article  PubMed  Google Scholar 

  27. Stokkel MPM, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2218–28.

    Article  PubMed  Google Scholar 

  28. Brzozowska M, Roach P. Timing and potential role of diagnostic I-123 scintigraphy in assessing radioiodine breast uptake before ablation in postpartum women with thyroid cancer: a case series. Clin Nucl Med. 2006;31(11):683–7.

    Article  PubMed  Google Scholar 

  29. Ross DS. Radioiodine therapy for hyperthyroidism. N Engl J Med. 2011;364:543–50.

    Google Scholar 

  30. Bartalena L, Chiovato L, Vitti P. Management of hyperthyroidism due to Graves’ disease: frequently asked questions and answers (if any). J Endocrinol Investig. 2016;39(10):1105–14.

    Article  CAS  Google Scholar 

  31. Bahn R, Burch H, Cooper D, Garber J, Greenlee M, Klein I, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American thyroid association and american association of clinical endocrinologists. Thyroid. 2011;21(6):593–646.

    Article  CAS  Google Scholar 

  32. Träisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, et al. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94(10):3700–7.

    Article  PubMed  CAS  Google Scholar 

  33. Eckstein AK, Plicht M, Lax H, Neuhäuser M, Mann K, Lederbogen S, et al. Thyrotropin receptor autoantibodies are independent risk factors for graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab. 2006;91(9):3464–70.

    Article  CAS  PubMed  Google Scholar 

  34. Reiners C. Radioactivity and thyroid cancer. Hormones. 2009;8:185–92.

    Article  PubMed  Google Scholar 

  35. Ron E, Doody M, Becker D, Harris B 3rd, Hoffman D, McConahey WM, et al. Cancer mortality following treatment for adult hyperthyroidism. Cooperative thyrotoxicosis therapy follow- up study group. JAMA. 1998;280:347–55.

    Article  CAS  PubMed  Google Scholar 

  36. Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, et al. Graves’ disease and radioiodine therapy: is success of ablation dependent on the achieved dose above 200 Gy? Nuklearmedizin. 2008;47:13–7.

    Article  CAS  PubMed  Google Scholar 

  37. Reinhardt MJ, Brink I, Joe A, Von Mallek D, Ezziddin S, Palmedo H, et al. Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. Eur J Nucl Med. 2002;29:1118–24.

    Article  CAS  Google Scholar 

  38. Dunkelmann S, Neumann V, Staub U, Groth P, Kuenstner H, Schuemichen C. Results of a risk adapted and functional radioiodine therapy in Graves’ disease. Nuklearmedizin. 2005;44:238–42.

    Article  CAS  PubMed  Google Scholar 

  39. Rivkees S. Controversies in the management of Graves’ disease in children. J Endocrinol Investig. 2016;39(11):1247–57.

    Article  CAS  Google Scholar 

  40. Dobyns B, Sheline G, Workman J, Tompkins E, McConahey W, Becker D. Malignant and benign neo- plasms of the thyroid in patients treated for hyperthyroidism: a report of the cooperative thyrotoxicosis therapy follow-up study. J Clin Endocrinol Metab. 1974;38:976–98.

    Article  CAS  PubMed  Google Scholar 

  41. Sheline GE, McCormack K, Galante M. Thyroid nodules occurring late after treatment of thryotoxicosis with radioiodine. J Clin Endocrinol Metab. 1962;22:8–17.

    Article  CAS  PubMed  Google Scholar 

  42. Rivkees SA, Dinauer C. An optimal treatment for pediatric Graves’ disease is radioiodine. J Clin Endocrinol Metab. 2007;92(3):797–800.

    Article  CAS  PubMed  Google Scholar 

  43. Chao M, Jiawei X, Guoming W, Jianbin L, Wanxia L, Driedger A, et al. Radioiodine treatment for pediatric hyperthyroid Graves’ disease. Eur J Pediatr. 2009;168:1165–9.

    Article  PubMed  CAS  Google Scholar 

  44. Tarantini B, Ciuoli C, Di Cairano G, Guarino E, Mazzucato P, Montanaro A, et al. Effectiveness of radioiodine (131-I) as definitive therapy in patients with autoimmune and non-autoimmune hyperthyroidism. J Endocrinol Investig. 2006;29(7):594–8.

    Article  CAS  Google Scholar 

  45. Kung A, Yau C, Cheng A. The action of methimazole and L-thyroxine in radioiodine therapy: a prospective study on the incidence of hypothyroidism. Thyroid. 1995;5:7–12.

    Article  CAS  PubMed  Google Scholar 

  46. Bonnema SJ, Bennedbæk FN, Veje A, Marving J, Hegedüs L. Propylthiouracil before 131I therapy of hyperthyroid diseases: effect on cure rate evaluated by a randomized clinical trial. J Clin Endocrinol Metab. 2004;89(9):4439–44.

    Article  CAS  PubMed  Google Scholar 

  47. Santos R, Romaldini J, Ward L. A randomized controlled trial to evaluate the effectiveness of 2 regimens of fixed iodine (131I) doses for Graves disease treatment. Clin Nucl Med. 2012;37:241–4.

    Article  PubMed  Google Scholar 

  48. Braga M, Walpert N, Burch H, Solomon B, Cooper D. The effect of methimazole on cure rates after radioiodine treatment for Graves’ hyperthyroidism: a randomized clinical trial. Thyroid. 2002;12:135–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari M, et al. 2013 EANM Dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40:1126–34.

    Article  PubMed  CAS  Google Scholar 

  50. Willegaignon J, Sapienza M, Buchpiguel CA. Radioiodine therapy for Graves disease: thyroid absorbed dose of 300 Gy-tuning the target for therapy planning. Clin Nucl Med. 2013;38(4):231–6.

    Article  PubMed  Google Scholar 

  51. Krohn T, Hänscheid H, Müller B, Behrendt F, Heinzel A, Mottaghy F, et al. Maximum dose rate is a determinant of hypothyroidism after 131i therapy of Graves’ disease but the total thyroid absorbed dose is not. J Clin Endocrinol Metab. 2014;99(11):4109–15.

    Article  CAS  PubMed  Google Scholar 

  52. Rivkees SA, Sklar C, Freemark M. Clinical review 99: the management of Graves’ disease in children, with special emphasis on radioiodine treatment. J Clin Endocrinol Metab. 1998;83(11):3767–76.

    CAS  PubMed  Google Scholar 

  53. Goolden A, Davey J. The ablation of normal thyroid tissue with iodine-131. Br J Radiol. 1963;36:340–5.

    Article  CAS  PubMed  Google Scholar 

  54. Graham G, Burman K. Radioiodine treatment of Graves’ disease. An assessment of its potential risks. Ann Intern Med. 1986;105:900–5.

    Article  CAS  PubMed  Google Scholar 

  55. McDermott M, Kidd G, Dodson LJ, Hofeldt F. Radioiodine-induced thyroid storm. Case report and literature review. Am J Med. 1983;75:353–9.

    Article  CAS  PubMed  Google Scholar 

  56. Akamizu T, Satoh T, Isozaki O, Suzuki A, Wakino S, Iburi T, et al. Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid. 2012;22(7):661–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shafe R, Nuttall F. Acute changes in thyroid function in patients treated with radioactive iodine. Lancet. 1975;2:635–7.

    Article  Google Scholar 

  58. Burch HB, Solomon BL, Cooper DS, Ferguson P, Walpert N, Howard R. The effect of antithyroid drug pretreatment on acute changes in thyroid hormone levels after 131I ablation for Graves’ disease. J Clin Endocrinol Metab. 2001;86(7):3016–21.

    CAS  PubMed  Google Scholar 

  59. Andrade V, Gross J, Maia A. Effect of methimazole pretreatment on serum thyroid hormone levels after radioactive treatment in Graves’ hyperthyroidism. J Clin Endocrinol Metab. 1999;84:4012–6.

    CAS  PubMed  Google Scholar 

  60. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.

    Article  PubMed  Google Scholar 

  61. Klein I. Endocrine disorders and cardiovascular disease. In: Libby P, et al., editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 8th ed. Philadelphia: Saunders/Elsevier; 2008. p. 2033–47.

    Google Scholar 

  62. Nygaard B, Hegedus L, Ulriksen P, Nielsen K, Hansen J. Radioiodine therapy for multinodular toxic goiter. Arch Intern Med. 1999;159:1364–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bonnema S, Bertelsen H, Mortensen J, Andersen P, Knudsen D, Bastholt L, et al. The feasibility of high dose iodine 131 treatment as an alternative to surgery in patients with a very large goiter: effect on thyroid function and size and pulmonary function. J Clin Endocrinol Metab. 1999;84:3636–41.

    CAS  PubMed  Google Scholar 

  64. Lee Y, Tam K, Lin Y, Leu W, Chang J, Hsiao C, et al. Recombinant human thyrotropin before (131) I therapy in patients with nodular goitre: a meta-analysis of randomized controlled trials. Clin Endocrinol. 2015;83:702–10.

    Article  CAS  Google Scholar 

  65. Nieuwlaat W, Hermus A, Sivro-Prndelj F, Corstens F, Huysmans D. Pretreatment with recombinant human TSH changes the regional distribution of radioiodine on thyroid scintigrams of nodular goiters. J Clin Endocrinol Metab. 2001;86:5330–6.

    Article  CAS  PubMed  Google Scholar 

  66. Silva M, Rubió I, Romão R, Gebrin E, Buchpiguel C, Tomimori E, et al. Administration of a single dose of recombinant human thyrotrophin enhances the efficacy of radioiodine treatment of large compressive multinodular goitres. Clin Endocrinol. 2004;60:300–8.

    Article  CAS  Google Scholar 

  67. Nielsen V, Bonnema S, Hegedus L. Transient goiter enlargement after administration of 0.3 mg of recombinant human thyrotropin in patients with benign non-toxic nodular goiter: a randomized, double- blind, cross-over trial. J Clin Endocrinol Metab. 2006;91:1317–22.

    Article  CAS  PubMed  Google Scholar 

  68. Nielsen V, Bonnema S, Boel-Jorgensen H, Grupe P, Hegedus L. Stimulation with 0.3 mg recombinant human thyrotropin prior to iodine 131 therapy to improve the size reduction of benign non-toxic nodular goiter: a prospective randomized double-blind trial. Arch Intern Med. 2006;166:1476–82.

    Article  CAS  PubMed  Google Scholar 

  69. Nieuwlaat W, Huysmans D, Van den Bosch HC, Sweep CG, Ross H, Corstens F, et al. Pretreatment with a single, low dose of recombinant human thyrotropin allows dose reduction of radioiodine therapy in patients with nodular goiter. J Clin Endocrinol Metab. 2003;88:3121–9. J Clin Endocrinol Metab. 2003;88:3121–9.

    Article  CAS  PubMed  Google Scholar 

  70. Amato E, Campennì A, Leotta S, Ruggeri R, Baldari S. Treatment of hyperthyroidism with radioiodine targeted activity: a comparison between two dosimetric methods. Phys Med. 2016;32(6):847–53.

    Article  PubMed  Google Scholar 

  71. Zakavi S, Mousavi Z, Davachi B. Comparison of four different protocols of I-131 therapy for treating single toxic thyroid nodule. Nucl Med Commun. 2009;30:169–75.

    Article  CAS  PubMed  Google Scholar 

  72. Metso S, Jaatinen P, Huhtala H, Luukkaala T, Oksala H, Salmi J. Long-term follow-up study of radioiodine treatment of hyperthyroidism. Clin Endocrinol. 2004;61:641–8.

    Article  CAS  Google Scholar 

  73. Ceccarelli C, Bencivelli W, Vitti P, Grasso L, Pinchera A. Outcome of radioiodine-131 therapy in hyperfunctioning thyroid nodules: a 20 years’ retrospective study. Clin Endocrinol. 2005;62:331–5.

    Article  CAS  Google Scholar 

  74. Holm L, Lundell G, Israelsson A, Dahlqvist I. Incidence of hypothyroidism occurring long after iodine-131 therapy for hyperthyroidism. J Nucl Med. 1982;23:103–7.

    CAS  PubMed  Google Scholar 

  75. Yano Y, Sugino K, Akaishi J, Uruno T, Okuwa K, Shibuya H, et al. Treatment of autonomously functioning thyroid nodules at a single institution: radioiodine therapy, surgery, and ethanol injection therapy. Ann Nucl Med. 2011;25:749–54.

    Article  CAS  PubMed  Google Scholar 

  76. Erickson D, Gharib H, Li H, Van Heerden J. Treatment of patients with toxic multinodular goiter. Thyroid. 1998;8:277–82.

    Article  CAS  PubMed  Google Scholar 

  77. Kang A, Grant C, Thompson G, Van Heerden J. Current treatment of nodular goiter with hyperthyroidism (Plummer’s disease): surgery versus radioiodine. Surgery. 2002;132:916–23.

    Article  PubMed  Google Scholar 

  78. Reinhardt M, Joe A, Von Mallek D, Zimmerlin M, Manka-Waluch A, Palmedo H, et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients with multifocal and disseminated autonomy on the basis of 99mTc-pertechnetate thyroid uptake. Eur J Nucl Med Mol Imaging. 2002;29:480–5.

    Article  CAS  PubMed  Google Scholar 

  79. Dunkelmann S, Endlicher D, Prillwitz A, Rudolph F, Groth P, Schuemichen C. Results of a TcTUs-optimized radioiodine therapy of multifocal and disseminated functional thyroid autonomy. Nuklearmedizin. 1999;38:131–9.

    Article  CAS  PubMed  Google Scholar 

  80. Reiners C, Schneider P. Radioiodine therapy of thyroid autonomy. Eur J Nucl Med. 2002;29(Suppl 2):S471–8.

    Article  CAS  Google Scholar 

  81. Reinhardt M, Kim B, Wissmeyer M, Juengling F, Brockmann H, Von Mallek D, et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients according to thyroid uptake of 99mTc-pertechnetate: applicability to unifocal thyroid autonomy? Eur J Nucl Med Mol Imaging. 2006;33:608–12.

    Article  CAS  PubMed  Google Scholar 

  82. Allahabadia A, Daykin J, Sheppard M, Gouch S, Franklyn J. Radioiodine treatment of hyperthyroidism—prognostic factors for outcome. J Clin Endocrinol Metab. 2001;86(8):3611–7.

    CAS  PubMed  Google Scholar 

  83. ICRP (1987). Protection of the patient in nuclear medicine (and statement from the 1987 Como Meeting of ICRP). ICRP Publication 52. Ann. ICRP 17 (4). ICRP Publ 52 Ann ICRP 17 (4). 1987;

    Google Scholar 

  84. Sisson J, Anca M, Avram A, Rubello D, Milton D, Gross M. Radioiodine treatment of hyperthyroidism: fixed or calculated doses; intelligent design or science? Eur J Nucl Med Mol Imaging. 2007;34:1129–30.

    Article  PubMed  Google Scholar 

  85. European Union Council Directive 97/43/EURATOM on health protection of individuals against the dangers of ionising radiation in relation to medical exposure. Luxembourg: Council of the European Union. 1997. http://ec.europa.eu/energy/nuclear/radioprotection/doc/legislation/9743_en.pdf.

  86. Szumowski P, Mojsak M, Abdelrazek S, Sykala M, Filonowicz A, Dorota Jurgilewicz D, et al. Calculation of therapeutic activity of radioiodine in Graves’ disease by means of Marinelli’s formula, using technetium (99mTc) scintigraphy. Endocrine. 2016;54:751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giovanella L, Verburg F, Ceriani L. One-stop-shop radioiodine dosimetry in patients with Graves’ disease. Endocrine. 2017;56(1):220–1.

    Article  CAS  PubMed  Google Scholar 

  88. De Rooij A, Vandenbroucke J, Smit J, Stokkel M, Dekkers O. Clinical outcomes after estimated versus calculated activity of radioiodine for the treatment of hyperthyroidism: systematic review and meta-analysis. Eur J Endocrinol. 2009;161(5):771–7.

    Article  PubMed  CAS  Google Scholar 

  89. Leslie W, Ward L, Salamon E, Ludwig S, Rowe R, Cowden E. A randomized comparison of radioiodine doses in Graves’ hyperthyroidism. J Clin Endocrinol Metab. 2003;88:978–83.

    Article  CAS  PubMed  Google Scholar 

  90. Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Treatment of Graves’ hyperthyroidism with radioioidine; results of a prospective study. Thyroid. 1997;2:247–51.

    Article  Google Scholar 

  91. Alexander EK, Larsen PR. High dose 131I therapy for the treatment of hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab [Internet]. 2002;87(3):1073–7. https://doi.org/10.1210/jcem.87.3.8333.

    Article  CAS  Google Scholar 

  92. Kendall-Taylor P, Keir M, Ross W. Ablative radioiodine therapy for hyperthyroidism: long term follow up study. Br Med J. 1984;289:361–3.

    Article  CAS  Google Scholar 

  93. Vija Racaru L, Fontan C, Bauriaud-Mallet M, Brillouet S, Caselles O, Zerdoud S, et al. Clinical outcomes 1 year after empiric 131I therapy for hyperthyroid disorders: real life experience and predictive factors of functional response. Nucl Med Commun. 2017;38(9):756–63.

    Article  PubMed  Google Scholar 

  94. Liu B, Tian R, Peng W, He Y, Huang R, Kuang A. Radiation safety precautions in 131I therapy of Graves’ disease based on actual biokinetic measurements. J Clin Endocrinol Metab. 2015;100(8):2934–41.

    Article  CAS  PubMed  Google Scholar 

  95. Rokni H, Sadeghi R, Moossavi Z, Treglia G, Zakavi S. Efficacy of different protocols of radioiodine therapy for treatment of toxic nodular goiter: systematic review and meta-analysis of the literature. Int J Endocrinol Metab. 2014;12(2):e14424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Willegaignon J, Sapienza M, Coura-Filho G, Watanabe T, Traino A, Buchpiguel C. Graves’ disease radioiodine-therapy: choosing target absorbed doses for therapy planning. Med Phys. 2014;41(1):12503.

    Article  CAS  Google Scholar 

  97. Cooper J. International commission on radiological protection. 2012 radiation protection principles. J Radiol Prot. 2012;32(1):N81–7.

    Article  CAS  PubMed  Google Scholar 

  98. Bonnema SJ, Hegedüs L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev. 2012;33(6):920–80.

    Article  CAS  PubMed  Google Scholar 

  99. De Leo S, Lee SY, Braverman LE. Hyperthyroidism. Lancet. 2016;388(10047):906–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bonnema SJ, Nielsen VE, Boel-Jørgensen H, Grupe P, Andersen PB, Bastholt L, et al. Improvement of goiter volume reduction after 0.3 mg recombinant human thyrotropin-stimulated radioiodine therapy in patients with a very large goiter: a double-blinded, randomized trial. J Clin Endocrinol Metab. 2007;92(9):3424–8.

    Article  CAS  PubMed  Google Scholar 

  101. Satoh T, Isozaki O, Suzuki A, Wakino S, Iburi T, Tsuboi K, et al. 2016 Guidelines for the management of thyroid storm from The Japan Thyroid Association and Japan Endocrine Society (First edition). Endocr J. 2016;63(12):1025–64.

    Article  CAS  PubMed  Google Scholar 

  102. Walter MA, Christ-Crain M, Schindler C, Müller-Brand J, Müller B. Outcome of radioiodine therapy without, on or 3 days off carbimazole: a prospective interventional three-group comparison. Eur J Nucl Med Mol Imaging. 2006;33(6):730–7.

    Article  CAS  PubMed  Google Scholar 

  103. Hancock LD, Tuttle RM, LeMar H, Bauman J, Patience T. The effect of propylthiouracil on subsequent radioactive iodine therapy in Graves’ disease. Clin Endocrinol. 1997;47(4):425–30.

    Article  CAS  Google Scholar 

  104. Santos RB, Romaldini JH, Ward LS. Propylthiouracil reduces the effectiveness of radioiodine treatment in hyperthyroid patients with Graves’ disease. Thyroid. 2004;14(7):525–30.

    Article  CAS  PubMed  Google Scholar 

  105. Bogazzi F, Bartalena L, Brogioni S, Scarcello G, Burelli A, Campomori A, Manetti L, Rossi G, Pinchera AME. Comparison of radioiodine with radioiodine plus lithium in the treatment of Graves’ hyperthyroidism. J Clin Endocrinol Metab. 1999;84:499–503.

    CAS  PubMed  Google Scholar 

  106. Robbins J. Perturbations of iodine metabolism by lithium. Math Biosci. 1984;72:337–47.

    Article  CAS  Google Scholar 

  107. Temple R, Berman M, Robbins JWJ. The use of lithium in the treatment of thyrotoxicosis. J Clin Invest. 1972;51:2746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bogazzi F, Bartalena L, Campomori A, Brogioni S, Traino C, De Martino F, et al. Treatment with lithium prevents serum thyroid hormone increase after thionamide withdrawal and radioiodine therapy in patients with graves’ disease. J Clin Endocrinol Metab. 2002;87(10):4490–5.

    Article  CAS  PubMed  Google Scholar 

  109. Gayed I, Wendt J, Haynie T, Dhekne R, Moore W. Timing for repeated treatment of hyperthyroid disease with radioactive iodine after initial treatment failure. Clin Nucl Med. 2001;26(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  110. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  111. Grewal RK, Larson SM, Pentlow CE, Pentlow KS, Gonen M, Qualey R, et al. Salivary gland side effects commonly develop several weeks after initial radioactive iodine ablation. J Nucl Med. 2009;50(10):1605–10.

    Article  CAS  PubMed  Google Scholar 

  112. Van Nostrand D, Bandaru V, Chennupati S, Wexler J, Kulkarni K, Atkins F, et al. Radiopharmacokinetics of radioiodine in the parotid glands after the administration of lemon juice. Thyroid. 2010;20(10):1113–9.

    Article  PubMed  CAS  Google Scholar 

  113. Nakada K, Ishibashi T, Takei T, Hirata K, Shinohara K, Katoh S, et al. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med. 2005;46(2):261–6.

    PubMed  Google Scholar 

  114. Jentzen W, Balschuweit D, Schmitz J, Freudenberg L, Eising E, Hilbel T, et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET(/CT) imaging. Eur J Nucl Med Mol Imaging. 2010;37(12):2298–306.

    Article  CAS  PubMed  Google Scholar 

  115. Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Törring O. TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol. 2008;158(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  116. Chiappori A, Villalta D, Bossert I, Ceresola EM, Lanaro D, Schiavo M, et al. Thyrotropin receptor autoantibody measurement following radiometabolic treatment of hyperthyroidism: comparison between different methods. J Endocrinol Investig. 2010;33(3):197–201.

    Article  CAS  Google Scholar 

  117. Schmidt M, Gorbauch E, Dietlein M, Faust M, Stützer H, Eschner W, et al. Incidence of postradioiodine immunogenic hyperthyroidism/Graves’ disease in relation to a temporary increase in thyrotropin receptor antibodies after radioiodine therapy for autonomous thyroid disease. Thyroid. 2006;16(3):281–8.

    Article  CAS  PubMed  Google Scholar 

  118. Nygaard B, Knudsen JH, Hegedüs L, Veje AH. Thyrotropin receptor antibodies and Graves’ disease, a side effect of 131I treatment in patients with nontoxic goiter. J Clin Endocrinol Metab. 1997;82:2926–30.

    CAS  PubMed  Google Scholar 

  119. Gamstedt A, Wadman B, Karisson A. Methimazole, but not betamethasone, prevents 131 I treatment-induced rises in thyrotropin receptor autoantibodies in hyperthyroid Graves’ disease. J Clin Endocrinol Metab. 1986;62:773–7.

    Article  CAS  PubMed  Google Scholar 

  120. Andrade VA, Gross JL, Maia AL. Serum thyrotropin-receptor autoantibodies levels after I therapy in Graves’ patients: effect of pretreatment with methimazole evaluated by a prospective, randomized study. Eur J Endocrinol. 2004;151:467–74.

    Article  CAS  PubMed  Google Scholar 

  121. Aizawa Y, Yoshida K, Kaise N, Fukazawa H, Kiso Y, Sayama N, et al. The development of transient hypothyroidism after iodine-131 treatment in hyperthyroid patients with Graves’ disease: prevalence, mechanism and prognosis. Clin Endocrinol. 1997;46(1):1–5.

    Article  CAS  Google Scholar 

  122. Sawers JSA, Toft AD, Irvine WJ, Brown NS, Seth J. Transient hypothyroidism after iodine-131 treatment of thyrotoxicosis. J Clin Endocrinol Metab. 1980;50:226–9.

    Article  CAS  PubMed  Google Scholar 

  123. Connell JM, Hilditch TE, McCruden DCAW. Transient hypothyroidism following radioiodine therapy for thyrotoxicosis. Br J Radiol. 1983;56(665):309–13.

    Article  CAS  PubMed  Google Scholar 

  124. Uy HL, Reasner CA, Samuels MH. Pattern of recovery of the hypothalamic-pituitary-thyroid axis following radioactive iodine therapy in patients with Graves’ disease. Am J Med. 1995;99(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  125. Gómez N, Gómez JM, Orti A, Gavaldà L, Villabona C, Leyes P, Soler J. Transient hypothyroidism after iodine-131 therapy for Grave’s disease. J Nucl Med. 1995;36(9):1539–42.

    PubMed  Google Scholar 

  126. Bartalena L, Fatourechi V. Extrathyroidal manifestations of Graves’ disease: a 2014 update. J Endocrinol Investig. 2014;37(8):691–700.

    Article  CAS  Google Scholar 

  127. Smith T. Pathogenesis of Graves’ orbitopathy: a 2010 update. J Endocrinol Investig. 2010;33:414–21.

    Article  CAS  Google Scholar 

  128. Iyer S, Bahn R. Immunopathogenesis of Graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab. 2012;26(3):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bahn RS, Dutton CM, Joba W, Heufelder AE. Thyrotropin receptor expression in cultured Graves’ orbital preadipocyte fibroblasts is stimulated by thyrotropin. Thyroid. 1998;8:193–6.

    Article  CAS  PubMed  Google Scholar 

  130. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95:2123–31.

    Article  CAS  PubMed  Google Scholar 

  131. Gerding MN, van der Meer JW, Broenink M, Bakker O, Wiersinga WM, Prummel MF. Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin Endocrinol. 2000;52:267–71.

    Article  CAS  Google Scholar 

  132. Li HX, Xiang N, Hu WK, Jiao XL. Relation between therapy options for Graves’ disease and the course of Graves’ ophthalmopathy: a systematic review and meta-analysis. J Endocrinol Investig. 2016;39(11):1225–33.

    Article  CAS  Google Scholar 

  133. Bartalena L, Marcocci C, Tanda ML, Manetti L, Dell’Unto E, Bartolomei MP, et al. Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med. 1998;129(8):632–5.

    Article  CAS  PubMed  Google Scholar 

  134. Stan MN, Bahn RS. Risk factors for development or deterioration of Graves’ ophthalmopathy. Thyroid. 2010;20(7):777–83.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Thornton J, Kelly SP, Harrison RA, Edwards R. Cigarette smoking and thyroid eye disease: a systematic review. Eye. 2007;21(9):1135–45.

    Article  CAS  PubMed  Google Scholar 

  136. Tallstedt L, Lundell G, Tørring O, Wallin G, Ljunggren JG, Blomgren H, Taube A. Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. N Engl J Med. 1992;326:1733–8.

    Article  CAS  PubMed  Google Scholar 

  137. Mourits M, Prummel M, Wiersinga W, Koornneef L. Clinical activity score as a guide in the management of patients with Graves´ ophthalmopathy. Clin Endocrinol. 1997;47(1):9–14.

    Article  CAS  Google Scholar 

  138. Bartalena L, Baldeschi L, Dickinson AJ, Eckstein A, Kendall-Taylor P, Marcocci C, et al. Consensus statement of the European group on Graves’ orbitopathy (EUGOGO) on management of Graves’ orbitopathy. Thyroid. 2008;18(3):333–46.

    Article  PubMed  Google Scholar 

  139. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, et al. The 2016 European Thyroid Association/European Group on Graves’ orbitopathy guidelines for the management of graves’ orbitopathy. Eur Thyroid J. 2016;5(1):9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda M, Dell’Unto E, et al. Relation between therapy for hyperthyroidism and the course. N Engl J Med. 1998;338:73–8.

    Article  CAS  PubMed  Google Scholar 

  141. Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, Altea MA, Nardi M, Pitz S, Boboridis K, Sivelli P, von Arx G, Mou-rits MP, Baldeschi L, Bencivelli W, Wiersinga W, European Group on Graves’ Orbitopathy. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364:1920–31.

    Article  CAS  PubMed  Google Scholar 

  142. Metso S, Auvinen A, Huhtala H, Salmi J, Oksala H, Jaatinen P. Increased cancer incidence after radioiodine treatment for hyperthyroidism. Cancer. 2007;109(10):1972–9.

    Article  CAS  PubMed  Google Scholar 

  143. Vanderpump M. Cardiovascular and cancer mortality after radioiodine treatment of hyperthyroidism. J Clin Endocrinol Metab. 2007;92(6):2033–5.

    Article  CAS  PubMed  Google Scholar 

  144. Boice JD. Radiation-induced thyroid cancer - What’s new? J Natl Cancer Inst. 2005;97(10):703–5.

    Article  PubMed  Google Scholar 

  145. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–32.

    Article  PubMed  Google Scholar 

  146. Read CH Jr, Tansey MJ, Menda Y. A 36-year retrospective analysis of the efficacy and safety of radioactive iodine in treating young Graves’ patients. J Clin Endocrinol Metab. 2004;89:4229–33.

    Article  CAS  PubMed  Google Scholar 

  147. Lee JA, Grumbach MM, Clark OH. The optimal treatment for pediatric Graves’ disease is surgery. J Clin Endocrinol Metab. 2007;92(3):801–3.

    Article  CAS  PubMed  Google Scholar 

  148. Lucignani G. Long-term risks in hyperthyroid patients treated with radioiodine: is there anything new? Eur J Nucl Med Mol Imaging. 2007;34(9):1504–9.

    Article  PubMed  Google Scholar 

  149. Berg G, Jacobsson L, Nyström E, Gleisner KS, Tennvall J. Consequences of inadvertent radioiodine treatment of Graves’ disease and thyroid cancer in undiagnosed pregnancy. Can we rely on routine pregnancy testing? Acta Oncol. 2008;47(1):145–9.

    Article  CAS  PubMed  Google Scholar 

  150. Garsi J-P, Schlumberger M, Rubino C, Ricard M, Labbe M, Ceccarelli C, et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49(5):845–52.

    Article  PubMed  Google Scholar 

  151. Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, Brierley JD, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol. 2008;69(3):479–90.

    Article  Google Scholar 

  152. Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following L131 therapy for thyroid cancer. Clin Endocrinol. 2002;56(6):755–8.

    Article  CAS  Google Scholar 

  153. Ceccarelli C, Canale D, Battisti P, Caglieresi C, Moschini C, Fiore E, et al. Testicular function after 131I therapy for hyperthyroidism. Clin Endocrinol. 2006;65(4):446–52.

    Article  CAS  Google Scholar 

  154. Krassas GE, Pontikides N. Male reproductive function in relation with thyroid alterations. Best Pract Res Clin Endocrinol Metab. 2004;18(2):183–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Campennì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campennì, A., Deandreis, D., Finessi, M., Ruggeri, R.M., Baldari, S. (2019). Radioiodine Therapy of Benign Thyroid Diseases. In: Giovanella, L. (eds) Nuclear Medicine Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-17494-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17494-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17493-4

  • Online ISBN: 978-3-030-17494-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics