On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes

  • Roman A. Gerasimov
  • Tatiana O. Petrova
  • Victor A. EremeyevEmail author
  • Andrei V. Maximov
  • Olga G. Maximova
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)


Motivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated as an highly anisotropic 2D strain gradient elasticity. The surface strain energy contains both first and second derivatives of the surface field of displacements. So it represents an intermediate class of 2D models of the surface elasticity such as Gurtin-Murdoch and Steigmann-Ogden ones.



The author acknowledges financial support from the Russian Science Foundation under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and design of modern metamaterials and elements of structures made on its base” (No. 15-19-10008-P).


  1. 1.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)CrossRefGoogle Scholar
  2. 2.
    Aifantis, E.C.: Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999)CrossRefGoogle Scholar
  3. 3.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)CrossRefGoogle Scholar
  4. 4.
    Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)CrossRefGoogle Scholar
  5. 5.
    Altenbach, H., Bîrsan, M., Eremeyev, V.A.: Cosserat-type rods. In: Altenbach H, Eremeyev VA (eds) Generalized Continua from the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 541, Springer, Vienna, pp 179–248 (2013).
  6. 6.
    Azzaroni, O.: Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. Part A: Polym. Chem. 50(16), 3225–3258 (2012)CrossRefGoogle Scholar
  7. 7.
    Azzaroni, O., Szleifer, I. (eds.).: Polymer and Biopolymer Brushes: for Materials Science and Biotechnology. Wiley, Hoboken (2018)Google Scholar
  8. 8.
    Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B: Eng. 43(3), 1315–1328 (2012)CrossRefGoogle Scholar
  9. 9.
    Brittain, W.J., Minko, S.: A structural definition of polymer brushes. J. Polym. Sci. Part A: Polym. Chem. 45(16), 3505–3512 (2007)CrossRefGoogle Scholar
  10. 10.
    dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)Google Scholar
  11. 11.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol 42, pp. 1–68. Elsevier (2008)Google Scholar
  12. 12.
    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016a)CrossRefGoogle Scholar
  13. 13.
    Eremeyev, V.A.: On equilibrium of a second-gradient fluid near edges and corner points. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol. 60, pp. 547–556. Springer, Singapore (2016b)Google Scholar
  14. 14.
    Eremeyev, V.A.: On the effective properties of elastic materials and structures at the micro- and nano-scale considering various models of surface elasticity. In: Trovalusci, P. (ed.) Materials with Internal Structure: Multiscale and Multifield Modeling and Simulation, pp. 29–41. Springer, Cham (2016c).
  15. 15.
    Eremeyev, V.A.: On dynamic boundary conditions within the linear Steigmann–Ogden model of surface elasticity and strain gradient elasticity. In: Altenbach, H., Belyaev, A., Eremeyev, V.A., Krivtsov, A., Porubov, A.V. (eds.) Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials, vol. 103, pp 195–207. Springer, Cham (2019).
  16. 16.
    Eremeyev, V.A., dell’Isola, F.: A note on reduced strain gradient elasticity. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 301–310. Springer International Publishing, Cham (2018)Google Scholar
  17. 17.
    Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)CrossRefGoogle Scholar
  18. 18.
    Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Thermodyn. 28(1–2), 407–422 (2016)CrossRefGoogle Scholar
  19. 19.
    Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey (2018a)Google Scholar
  20. 20.
    Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2018b). Scholar
  21. 21.
    Feng, C., Huang, X.: Polymer brushes: efficient synthesis and applications. Acc. Chem. Res. 51(9), 2314–2323 (2018)., pMID: 30137964
  22. 22.
    Forest, S., Cordero, N.M., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput. Mater. Sci. 50(4), 1299–1304 (2011)Google Scholar
  23. 23.
    Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Computer simulation of the mechanical properties of metamaterials. J. Phys. Conf. Ser. 738(1), 012100 (2016)Google Scholar
  24. 24.
    Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics 508(1), 151–160 (2017a)CrossRefGoogle Scholar
  25. 25.
    Gerasimov, R.A., Maksimova, O.G., Petrova, T.O., Eremeyev, V.A., Maksimov, A.V.: Analytical and computer methods to evaluate mechanical properties of the metamaterials based on various models of polymeric chains. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 35–69. Springer (2017b)Google Scholar
  26. 26.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration Mech. An 57(4), 291–323 (1975)CrossRefGoogle Scholar
  27. 27.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Sol. Struct. 14(6), 431–440 (1978)CrossRefGoogle Scholar
  28. 28.
    Han, Z., Mogilevskaya, S.G., Schillinger, D.: Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. Int. J. Solids Struct. 147, 166–182 (2018)CrossRefGoogle Scholar
  29. 29.
    Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. der Esienbau 11, 437–452 (1920)Google Scholar
  30. 30.
    Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013a)CrossRefGoogle Scholar
  31. 31.
    Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Appl. Mech. Rev. 65(1), 010802 (2013b)Google Scholar
  32. 32.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)Google Scholar
  33. 33.
    Liebold, C., Müller, W.H.: Are microcontinuum field theories of elasticity amenable to experiments? A review of some recent results. In: Differential Geometry and Continuum Mechanics, pp. 255–278. Springer (2015)Google Scholar
  34. 34.
    Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)Google Scholar
  35. 35.
    Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with gurtin-murdoch model of interphase. Int. J. Solids Struct. 97, 75–88 (2016)CrossRefGoogle Scholar
  36. 36.
    Petrova, T., Maksimova, O., Gerasimov, R., Maksimov, A.: Application of analytical and numerical methods to simulation of systems with orientation interactions. Phys. Solid State 54(5), 937–939 (2012)CrossRefGoogle Scholar
  37. 37.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)CrossRefGoogle Scholar
  38. 38.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)CrossRefGoogle Scholar
  39. 39.
    Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11(2), 45–55 (1943)CrossRefGoogle Scholar
  40. 40.
    Turco, E.: Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica. Continuum Mech. Thermodyn. 30(5), 1039–1057 (2018)CrossRefGoogle Scholar
  41. 41.
    Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. für angew. Math. und Phys. 67(4), 85 (2016)CrossRefGoogle Scholar
  42. 42.
    Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a hencky-type model predict the mechanical behaviour of pantographic lattices? In: Mathematical Modelling in Solid Mechanics, pp. 285–311. Springer (2017)Google Scholar
  43. 43.
    Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. (2018)Google Scholar
  44. 44.
    Wang, C.M., Zhang, H., Gao, R.P., Duan, W.H., Challamel, N.: Hencky bar-chain model for buckling and vibration of beams with elastic end restraints. Int. J. Struct. Stab. Dyn. 15(07), 1540,007 (2015)Google Scholar
  45. 45.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar
  46. 46.
    Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)CrossRefGoogle Scholar
  47. 47.
    Zhang, H., Wang, C., Ruocco, E., Challamel, N.: Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Eng. Struct. 126, 252–263 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roman A. Gerasimov
    • 1
  • Tatiana O. Petrova
    • 1
  • Victor A. Eremeyev
    • 1
    • 2
    • 3
    Email author
  • Andrei V. Maximov
    • 4
  • Olga G. Maximova
    • 4
  1. 1.Southern Federal UniversityRostov on DonRussia
  2. 2.Faculty of Civil Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  3. 3.Southern Scientific Center of RASciRostov on DonRussia
  4. 4.Cherepovets State UniversityCherepovetsRussia

Personalised recommendations