On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations

  • Victor A. EremeyevEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 109)


Within the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel long fibers which posses bending and extensional stiffness in one direction only. As for other models with surface energy there exist anti-plane surface waves. In the paper the dispersion relation is derived and dependence on the material parameters is analyzed.



The author acknowledges financial support from the Russian Science Foundation under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and design of modern metamaterials and elements of structures made on its base” (No. 15-19-10008-P).


  1. 1.
    Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)CrossRefGoogle Scholar
  2. 2.
    Achenbach, J.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)Google Scholar
  3. 3.
    Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)CrossRefGoogle Scholar
  4. 4.
    Berdichevsky, V.: Variational Principles of Continuum Mechanics: I. Fundamentals. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)CrossRefGoogle Scholar
  6. 6.
    dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenisation, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. Ser. A 472(2185), 20150,790 (2016)CrossRefGoogle Scholar
  7. 7.
    dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Corte, A.D., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.F., Müller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 1–34 (2018).
  8. 8.
    Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)Google Scholar
  9. 9.
    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)CrossRefGoogle Scholar
  10. 10.
    Eremeyev, V.A.: On nonlocal surface elasticity and propagation of surface anti-plane waves. In: Altenbach, H., Goldstein, R.V., Murashkin, E. (eds.) Mechanics for Materials and Technologies, pp. 153–162. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  11. 11.
    Eremeyev, V.A.: On the peculiarities of anti-plane surface waves propagation for media with microstructured coating. In: MATEC Web of Conferences, EDP Sciences, vol. 226, p. 03020 (2018)Google Scholar
  12. 12.
    Eremeyev, V.A., dell’Isola, F.: A note on reduced strain gradient elasticity. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 301–310. Springer International Publishing, Cham (2018)CrossRefGoogle Scholar
  13. 13.
    Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Thermodyn. 28(1–2), 407–422 (2016)CrossRefGoogle Scholar
  14. 14.
    Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)CrossRefGoogle Scholar
  15. 15.
    Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey (2018a)CrossRefGoogle Scholar
  16. 16.
    Eremeyev, V.A., Rosi, G., Naili, S.: Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. Math. Mech. Solids (2018b). Scholar
  17. 17.
    Ewing, W.M., Jardetzky, W.S., Press, F.: Elastic Waves in Layered Media. McGraw-Hill Book Company, New York (1957)CrossRefGoogle Scholar
  18. 18.
    Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Computer simulation of the mechanical properties of metamaterials. J. Phys. Conf. Ser. 738(1), 012,100 (2016)CrossRefGoogle Scholar
  19. 19.
    Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics 508(1), 151–160 (2017a)CrossRefGoogle Scholar
  20. 20.
    Gerasimov, R.A., Maksimova, O.G., Petrova, T.O., Eremeyev, V.A., Maksimov, A.V.: Analytical and computer methods to evaluate mechanical properties of the metamaterials based on various models of polymeric chains. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 35–69. Springer, Singapore (2017b)Google Scholar
  21. 21.
    Goldstein, R.V., Maugin, G.A.: Surface Waves in Anisotropic and Laminated Bodies and Defects Detection, NATO ASI. Springer (2004)Google Scholar
  22. 22.
    Gourgiotis, P., Georgiadis, H.: Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterized by the Toupin-Mindlin gradient theory. Int. J. Solids Struct. 62, 217–228 (2015)CrossRefGoogle Scholar
  23. 23.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration Mech. Anal. 57(4), 291–323 (1975)CrossRefGoogle Scholar
  24. 24.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Sol. Struct. 14(6), 431–440 (1978)CrossRefGoogle Scholar
  25. 25.
    Han, Z., Mogilevskaya, S.G., Schillinger, D.: Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. Int. J. Solids Struct. 147, 166–182 (2018)CrossRefGoogle Scholar
  26. 26.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)CrossRefGoogle Scholar
  27. 27.
    Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016)CrossRefGoogle Scholar
  28. 28.
    Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)CrossRefGoogle Scholar
  29. 29.
    Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)CrossRefGoogle Scholar
  30. 30.
    Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11(2), 45–55 (1943)CrossRefGoogle Scholar
  31. 31.
    Turco, E.: Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica. Continuum Mech. Thermodyn. 30(5), 1039–1057 (2018)CrossRefGoogle Scholar
  32. 32.
    Überall, H.: Surface waves in acoustics. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, vol. X. Academic Press, New York (1973)Google Scholar
  33. 33.
    Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47(2), 147–165 (1997)CrossRefGoogle Scholar
  34. 34.
    Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta. Mech. Solida Sin. 24, 52–82 (2011)CrossRefGoogle Scholar
  35. 35.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1999)CrossRefGoogle Scholar
  36. 36.
    Yerofeyev, V.I., Sheshenina, O.A.: Waves in a gradient-elastic medium with surface energy. J. Appl. Math. Mech. 69(1), 57–69 (2005)CrossRefGoogle Scholar
  37. 37.
    Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann-Ogden interface: local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland
  2. 2.Southern Federal UniversityRostov on DonRussia
  3. 3.Southern Scientific Center of RASciRostov on DonRussia

Personalised recommendations