Advertisement

Parameterized Algorithms for Generalizations of Directed Feedback Vertex Set

  • Alexander GökeEmail author
  • Dániel Marx
  • Matthias Mnich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11485)

Abstract

The Directed Feedback Vertex Set (DFVS) problem takes as input a directed graph G and seeks a smallest vertex set S that hits all cycles in G. This is one of Karp’s 21 \(\mathsf {NP}\)-complete problems. Resolving the parameterized complexity status of DFVS was a long-standing open problem until Chen et al. in 2008 showed its fixed-parameter tractability via a \(4^kk! n^{\mathcal {O}(1)}\)-time algorithm, where \(k = |S|\).

Here we show fixed-parameter tractability of two generalizations of DFVS:
  • Find a smallest vertex set S such that every strong component of \(G - S\) has size at most s: we give an algorithm solving this problem in time \(4^k(ks+k+s)!\cdot n^{\mathcal {O}(1)}\).

  • Find a smallest vertex set S such that every non-trivial strong component of \(G - S\) is 1-out-regular: we give an algorithm solving this problem in time \(2^{\mathcal {O}(k^3)}\cdot n^{\mathcal {O}(1)}\).

We also solve the corresponding arc versions of these problems by fixed-parameter algorithms.

References

  1. 1.
    Bang-Jensen, J., Larsen, T.M.: DAG-width and circumference of digraphs. J. Graph Theory 82(2), 194–206 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cechlárová, K., Schlotter, I.: Computing the deficiency of housing markets with duplicate houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 72–83. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17493-3_9CrossRefGoogle Scholar
  3. 3.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 19 (2008). Article No. 21MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chitnis, R., Cygan, M., Hajiaghayi, M., Marx, D.: Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28 (2015). Article No. 28MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42, 1674–1696 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of Eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Even, G., Naor, J., Rao, S., Schieber, B.: Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47(4), 585–616 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoret. Comput. Sci. 10(2), 111–121 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guruswami, V., Håstad, J., Manokaran, R., Raghavendra, P., Charikar, M.: Beating the random ordering is hard: every ordering CSP is approximation resistant. SIAM J. Comput. 40(3), 878–914 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guruswami, V., Lee, E.: Simple proof of hardness of feedback vertex set. Theory Comput. 12, 11 (2016). Article No. 6MathSciNetCrossRefGoogle Scholar
  12. 12.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  13. 13.
    Kumar, M., Lokshtanov, D.: A \(2\ell k\) kernel for \(\ell \)-component order connectivity. In: Proceedings of the IPEC 2016. Leibniz International Proceedings in Informatics, vol. 63, pp. 20:1–20:14 (2017)Google Scholar
  14. 14.
    Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: When recursion is better than iteration: a linear-time algorithm for acyclicity with few error vertices. In: Proceedings of the SODA 2018, pp. 1916–1933 (2018)Google Scholar
  15. 15.
    Lokshtanov, D., Ramanujan, M., Saurabh, S.: Parameterized complexity and approximability of directed odd cycle transversal (2017). https://arxiv.org/abs/1704.04249
  16. 16.
    Marx, D.: What’s next? Future directions in parameterized complexity. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30891-8_20CrossRefGoogle Scholar
  17. 17.
    Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Svensson, O.: Hardness of vertex deletion and project scheduling. Theory Comput. 9, 759–781 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xiao, M.: Linear kernels for separating a graph into components of bounded size. J. Comput. Syst. Sci. 88, 260–270 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität BonnBonnGermany
  2. 2.SZTAKIBudapestHungary

Personalised recommendations