Skip to main content

Extension of Vertex Cover and Independent Set in Some Classes of Graphs

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11485)

Abstract

We study extension variants of the classical problems Vertex Cover and Independent Set. Given a graph \(G=(V,E)\) and a vertex set \(U \subseteq V\), it is asked if there exists a minimal vertex cover (resp. maximal independent set) S with \(U\subseteq S\) (resp. \(U \supseteq S\)). Possibly contradicting intuition, these problems tend to be \({\mathsf {NP}}\)-complete, even in graph classes where the classical problem can be solved efficiently. Yet, we exhibit some graph classes where the extension variant remains polynomial-time solvable. We also study the parameterized complexity of theses problems, with parameter |U|, as well as the optimality of simple exact algorithms under ETH. All these complexity considerations are also carried out in very restricted scenarios, be it degree or topological restrictions (bipartite, planar or chordal graphs). This also motivates presenting some explicit branching algorithms for degree-bounded instances. e further discuss the price of extension, measuring the distance of U to the closest set that can be extended, which results in natural optimization problems related to extension problems for which we discuss polynomial-time approximability.

Keywords

  • Extension problems
  • Special graph classes
  • Approximation algorithms
  • \({\mathsf {NP}}\)-completeness

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-17402-6_11
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-17402-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Bazgan, C., Brankovic, L., Casel, K., Fernau, H.: On the complexity landscape of the domination chain. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 61–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_6

    CrossRef  Google Scholar 

  2. Bazgan, C., et al.: The many facets of upper domination. Theor. Comput. Sci. 717, 2–25 (2018)

    CrossRef  MathSciNet  Google Scholar 

  3. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. In: ECCC, no. 049 (2003)

    Google Scholar 

  4. Boria, N., Croce, F.D., Paschos, V.T.: On the max min vertex cover problem. Disc. Appl. Math. 196, 62–71 (2015)

    CrossRef  MathSciNet  Google Scholar 

  5. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean functions. Optim. Meth. Softw. 10(2), 147–156 (1998)

    CrossRef  MathSciNet  Google Scholar 

  6. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity of solution extension of optimization problems. CoRR, abs/1810.04553 (2018)

    Google Scholar 

  7. Chang, G.J.: The weighted independent domination problem is NP-complete for chordal graphs. Disc. Appl. Math. 143(1–3), 351–352 (2004)

    CrossRef  MathSciNet  Google Scholar 

  8. Chang, M.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

    CrossRef  MathSciNet  Google Scholar 

  9. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007)

    CrossRef  MathSciNet  Google Scholar 

  10. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 4(1), 134–138 (1982)

    CrossRef  MathSciNet  Google Scholar 

  11. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inf. Proc. Lett. 46(4), 169–172 (1993)

    CrossRef  MathSciNet  Google Scholar 

  12. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)

    CrossRef  MathSciNet  Google Scholar 

  13. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Disc. Math. 28(4), 1916–1929 (2014)

    CrossRef  MathSciNet  Google Scholar 

  14. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_37

    CrossRef  Google Scholar 

  15. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 138–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_11

    CrossRef  MATH  Google Scholar 

  16. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Disc. Appl. Math. 52, 233–252 (1994)

    CrossRef  MathSciNet  Google Scholar 

  17. Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comp. 9, 558–565 (1980)

    CrossRef  MathSciNet  Google Scholar 

  18. Manlove, D.F.: On the algorithmic complexity of twelve covering and independence parameters of graphs. Disc. Appl. Math. 91(1–3), 155–175 (1999)

    CrossRef  MathSciNet  Google Scholar 

  19. Mishra, S., Sikdar, K.: On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem. RAIRO Inf. Théor. Appl. 35(3), 287–309 (2001)

    CrossRef  MathSciNet  Google Scholar 

  20. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings on 33rd Annual ACM Symposium on Theory of Computing, STOC, pp. 453–461. ACM (2001)

    Google Scholar 

  21. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comp. Syst. 3(1), 103–128 (2007)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the Deutsche Forschungsgemeinschaft DFG (FE 560/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Casel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Casel, K., Fernau, H., Ghadikoalei, M.K., Monnot, J., Sikora, F. (2019). Extension of Vertex Cover and Independent Set in Some Classes of Graphs. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)